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Abstract

In causal inference, randomized experiment is a de facto
method to overcome various theoretical issues in observa-
tional study. However, the experimental design requires ex-
pensive costs, so an efficient experimental design is neces-
sary. We propose ABC3, a Bayesian active learning policy for
causal inference. We show a policy minimizing an estimation
error on conditional average treatment effect is equivalent to
minimizing an integrated posterior variance, similar to Cohn
criteria (Cohn, Ghahramani, and Jordan 1994). We theoreti-
cally prove ABC3 also minimizes an imbalance between the
treatment and control groups and the type 1 error probability.
Imbalance-minimizing characteristic is especially notable as
several works have emphasized the importance of achieving
balance. Through extensive experiments on real-world data
sets, ABC3 achieves the highest efficiency, while empirically
showing the theoretical results hold.

Code —
https://github.com/AIML-K/ActiveBayesianCausal/

Technical appendix — https://arxiv.org/abs/2412.11104

1 Introduction
The major goal of causal inference is to estimate the treat-
ment effect which is a relative effect on the treatment group
compared to the control group. In randomized experiments,
practitioners allocate treatment to subjects to estimate the
treatment effect. Randomized experiments free practitioners
from various theoretical problems prevailing in an observa-
tional study, e.g. unmeasured confounders. However, a ran-
domized experiment is usually more expensive than an ob-
servational study, as a result, an efficient experiment design
is desirable.

To achieve efficiency in randomized experiments, Efron
(1971) first introduced a biased-coin design, and several
works tried to minimize the estimation bias by achieving
a balance between treatment and control groups (Atkin-
son 2014). Antognini and Zagoraiou (2011) extended this
to covariate-adaptive design to achieve a balance, not only
between treatment-control groups but also within sampling
strata. Several recent works target the same goal using
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an adaptive Neyman allocation (Dai, Gradu, and Harshaw
2023) or Pigeonhole design (Zhao and Zhou 2024). How-
ever, these lines of work assume the experimental subjects
are given, not actively choosable.

Active learning is a framework where a practitioner can
choose unlabeled data points and ask an oracle to label them
(Settles 2009). We can further rationalize the experimental
design by adopting an active learning framework. For ex-
ample, internet companies can choose a member whom they
implement the A/B test, by utilizing the personal informa-
tion they have gathered. Pharmaceuticals can choose a sub-
ject based on their personal information after the applicants
are gathered to save a budget.

To develop a sound active learning method for random-
ized experiments, (1) it should not violate the standard as-
sumptions in causal inference. Also, (2) the method should
achieve a balance between observation and control groups to
make a sound conclusion. We introduce ABC3, a novel ac-
tive learning policy for randomized experiments to remedy
these issues. Using the Gaussian process, our policy targets
minimizing the error of individual treatment effect estima-
tion. Our contributions are three folds:

• We theoretically show minimizing the estimation error
on individual treatment effect is equivalent to minimizing
the integrated predictive variance in a Bayesian sense.

• ABC3, the policy minimizing the variance, theoretically
minimizes the imbalance between treatment and control
groups and the type 1 error rate.

• With extensive experiments, we empirically verify ABC3
outperforms other methods while showing theoretical
properties hold.

After examining related works in Section 2, we formalize
our problem in Section 3. Then we introduce ABC3 and its
theoretical properties in Section 4. We empirically verify the
performance and properties of ABC3 in Section 5. Then we
conclude our paper with several discussions and limitations
in Section 6 and 7.

2 Related Works
There are several works exploring an active learning pol-
icy for observational data (Sundin et al. (2019), Jesson et al.
(2021), and Toth et al. (2022)). Especially, Sundin et al.
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(2019) proposed an active learning policy for decision mak-
ing, when treatment-control groups are imbalanced. They
theoretically showed the imbalance can result in a type S er-
ror, where a practitioner estimates the treatment effect with
a different sign. Likewise, Shalit, Johansson, and Sontag
(2017) showed that the generalization error is bounded by
the imbalance when estimating the treatment effect. How-
ever, their work focused on obtaining a balanced representa-
tion from observational data, not a randomized experiment
setting.

For randomized experiments, Deng, Pineau, and Mur-
phy (2011) suggests an active learning policy sampling a
point with the highest predictive variance which is similar
to Mackay’s criteria (MacKay 1992). Zhu et al. (2024) also
proposed Mackay’s criteria-like method under network in-
terference structure. Song, Mak, and Wu (2023) suggested
ACE which targets maximizing the covariance between ob-
served and test data sets. We will compare the effectiveness
of our policy with these policies.

Sample-constrained causal inference setting shares a sim-
ilar goal with active learning: achieving lower estimation er-
ror with fewer samples. Addanki et al. (2022) and Ghadiri
et al. (2023) proposed an efficient sampling and estimation
method in a randomized experiment setting. Harshaw et al.
(2023) suggested a sampling method balancing covariates.
However, their work assumes a linear relationship between
covariates and potential outcomes, which is vulnerable in
real-world scenarios. We will also compare the effectiveness
of these policies.

3 Problem Formulation
Let X ∈ X , Y ∈ Y and A ∈ {0, 1} be random variables.
X is a covariate representing each subject, Y is an outcome,
and A represents a binary treatment. Following the Neyman-
Rubin causal model (Rubin 1974), additionally define Y 0

and Y 1, potential outcomes for either control or treatment.
Unlike the usual supervised learning settings, a practitioner
can observe only one of Y 0 and Y 1 in a causal inference
setting. x, y, a, y0 and y1 denotes the realizations of each
random variable.

Let DΩ = {(xi, y
0
i , y

1
i )}Ni=1 be a subject pool with co-

variate information xi and potential outcomes y0i , y
1
i ∈ R.

Let D0
t = {(xi, y

0
i )}i∈I0

t
be an observed control group

data set at time t with an index set I0t . Likewise, define
D1

t = {(xi, y
1
i )}i∈I1

t
for a treatment group. Let XΩ, X

0
t and

X1
t be sets of xs in each data set, DΩ, D

0
t and D1

t .
Our quantity of interest is the conditional average treat-

ment effect (CATE), CATE(x) = E
[
Y 1 − Y 0|X = x

]
for each subject x. Then we can train an estimator

ˆCATEt(x) = ŷ1t (x) − ŷ0t (x), where ŷat s are regressors
trained on each data set Da

t , a ∈ {0, 1}.
To evaluate the trained estimator, we use a standard met-

ric, expected precision in estimation of heterogeneous effect
(PEHE, Hill (2011)),

ϵPEHE( ˆCATEt) =

∫
X
( ˆCATEt(x)−CATE(x))2dP(x),

where P is a probability distribution over whole covariates.
In the usual case, we can treat P as a discrete distribution
corresponding to the covariates in DΩ. Then we can write
P = 1

NΣN
i=1δxi

, where δ is Dirac-delta function.
Meanwhile, in Bayesian statistics, we do not hypothesize

the existence of population parameters, e.g. CATE(x). In-
stead, we update our belief with observed data points. To
derive a Bayesian policy, we need to define the optimization
target in the Bayesian sense.

Definition 3.1.

ϵΩPEHE( ˆCATEt) =

∫
X
( ˆCATEt(x)− ˆCATEΩ(x))

2dP(x)

where ˆCATEΩ(x) = ŷ1Ω(x) − ŷ0Ω(x), ŷ
a
Ωs are regressors

trained on whole data set DΩ.

Intuitively, ˆCATEΩ represents the best oracle estimation
observing all factual and counterfactual data points. At any t,
our active learning problem is to choose an optimal (yet un-
observed) subject x∗ and its treatment a∗ which can achieve
the lowest expected ϵΩPEHE(

ˆCATEt+1), i.e.

x∗, a∗ =arg minxt+1∈XΩ\(X1
t

⋃
X0

t ),at+1∈{0,1}

Et+1

[
ϵΩPEHE(

ˆCATEt+1)
]
,

where Et [·] = E [·|Ft], Ft is a filtration at t. If x∗ = xj and
a∗ = a, we observe yaj and append it to the observed data
set Da

t+1 = Da
t

⋃
{(xj , y

a
j )} to be used at t+ 1.

While optimizing the expected error, an active learning
policy should not violate the standard assumptions for causal
inference. A standard randomized experiment in causal in-
ference requires several assumptions to identify the causal
effects (Rubin 1974).

Assumption 3.2. (Consistency) Y = AY 1 + (1−A)Y 0

Assumption 3.3. (Positivity) P(A = a|X = x) > 0, ∀x
Assumption 3.4. (Randomization) (Y 0, Y 1) ⊥⊥ A|X

Assumption 3.2. assumes that the observed outcome Y
under treatment A is equivalent to its potential outcome Y a.
Assumption 3.3. is required to well-define the conditional
expectation. Assumption 3.4. implies that the treatment A
should be assigned independently from the potential out-
come values. The assumptions guarantee an unbiased esti-
mation of CATE, i.e. CATE(x) = E

[
Y 1 − Y 0|X = x

]
=

E [E [Y |A = 1, X = x]− E [Y |A = 0, X = x]].
Assumption 3.4. is crucial in an active learning setting

since several active learning algorithms consider y values
when querying x and a. For instance, Song, Mak, and Wu
(2023) introduced ACE-UCB, a bandit-like policy that tar-
gets a subject with the highest individual treatment effect.
However, ACE-UCB exploits previously observed outcomes
when choosing a subject and treatment. As a result, ACE-
UCB can generate confounding between treatment and po-
tential outcomes and may violate Assumption 3.4. So query-
ing x and a without considering ys is crucial when adopting
an active learning framework for a causal inference.
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4 Proposed Method
ABC3: Active Bayesian Causal Inference with
Cohn Criteria
Gaussian process (GP , Rasmussen and Williams (2006)) is a
non-parametric machine learning model based on Bayesian
statistics. It is a powerful tool as it allows flexible function
estimation depending on a pre-defined kernel function. Set
priors on f ∼ GP(m(x), k(x, x′)), where m(x) is a mean
prior and k is a kernel function. Assume a data set D =
{(xi, yi)}Ni=1 with noisy observation yi = Y (xi) + ϵi, ϵi ∼
N (0, σ2

ϵ ). We can obtain a posterior distribution of f(x∗)
given data set D by computing f(x∗)|D as

f(x∗)|D ∼ N (m′(x∗), σ2(x∗)) where

m′(x∗) = m(x∗) + k∗(x
∗)T

[
K+ σ2

ϵ I
]−1

y,

cov(x, x∗) = k(x, x∗)− k∗(x)
T
[
K+ σ2

ϵ I
]−1

k∗(x
∗),

σ2(x∗) = cov(x∗, x∗),

k∗(x
∗) = [k(xi, x

∗)]
N
i=1 ,K = [k(xi, xj)]

N
i,j=1 ,

y = [yi]
N
i=1 .

We can observe that the posterior variance σ2(x∗) does
not depend on y. Adopting the notations from above, we
define ka

t,∗,Ka
t ,y

a
t and cova

t with observed data set Da
t at

time t. We also assume zero-mean prior, i.e. m(x) = 0, ∀x.
The following theorem identifies our active learning pol-

icy with only posterior variance terms.

Theorem 4.1. Assume |k(x, x′)| < ∞ and |yai | < ∞ for all
x, x′ ∈ X and a, i, as a result, ϵΩPEHE(

ˆCATEt) < ∞, ∀t.
Let our estimator ˆCATEt(x) = ŷ1t (x) − ŷ0t (x), where
ŷat (x) = Et [Y

a(x)] is a mean posterior distribution of
gaussian process Y a trained on data set Da

t . Assume two
Gaussian processes Y 1 and Y 0 are independent. Then

arg minxt+1,at+1
Et+1

[
ϵΩPEHE(

ˆCATEt+1)
]
=

arg minxt+1,at+1

∫
X
Vt+1

[
Y 1(x)

]
+ Vt+1

[
Y 0(x)

]
dP(x)

Proof of Theorem 4.1. is in Appendix A.1. Theorem
4.1. states that minimizing the error on CATE estimation is
equivalent to minimizing the integrated posterior variance of
the estimator. In active learning literature, the active learn-
ing policy minimizing the integrated predictive variance is
called Active Learning Cohn (Cohn, Ghahramani, and Jor-
dan (1994) and Gramacy (2020)). Seo et al. (2000) proposed
Active Learning Cohn policy utilizing the Gaussian process
in a usual supervised learning setting. We extend this line of
work to causal inference and name our policy after his name,
ABC3: Active Bayesian Causal Inference with Cohn Cri-
teria.

Computing the inverse of all hypothetical covariance ma-
trix Ka

t+1 for all x is computationally infeasible. However,
we can efficiently find the minimizer as Ka

t is a principal
submatrix of Ka

t+1.

Proposition 4.2.

arg minxt+1,at+1

∫
X
Vt+1

[
Y 1(x)

]
+ Vt+1

[
Y 0(x)

]
dP(x)

= arg maxxt+1,a∫
X

[
(k̃a

t+1)
T
[
Ka

t + σ2
ϵ I
]−1

ka
t,∗(x)− k(xt+1, x)

]2
dP(x)

k(xt+1, xt+1) + σ2
ϵ − (k̃a

t+1)
T [Ka

t + σ2
ϵ I]

−1
k̃a
t+1

(1)

where k̃a
t+1 = [k(xi, xt+1)]i∈Ia

t

Proof of Proposition 4.2. is in Appendix A.2. From the
proposition, we successfully eliminate the dependency on
Ka

t+1, and there is no need to compute an inverse matrix for
every x. We summarize our policy in Algorithm 1.

Algorithm 1: ABC3
Input: Current time step t, whole covariate set XΩ, covari-
ates distribution P, previous observations X1

t and X0
t , kernel

k, noise parameter σϵ

Output: xt+1, at+1

1: V0,V1 = ϕ, ϕ
2: for x ∈ XΩ \ (X0

t

⋃
X1

t ) do
3: Compute k̃1

t+1 and k̃0
t+1 assuming xt+1 = x

4: v0, v1 = Equation (1) for each a ∈ {0, 1}
5: V0 = V0

⋃
{v0},V1 = V1

⋃
{v1}

6: end for
7: i, at+1 = arg max(V0||V1)
8: xt+1 = XΩ \ (X0

t

⋃
X1

t ) [i]
9: return xt+1, at+1

Theoretical Analysis
Balancing Treatment-Control Groups Unlike usual su-
pervised learning, causal inference requires precise estima-
tion of both functions for treatment and control groups. As a
result, the balance between the two groups is crucial to ob-
tain a sound estimation. For example, consider a study on the
causal effect of online lectures. Assume our treatment group
is concentrated on undergraduate students while our control
group is concentrated on graduate students. Then it would
be difficult to make a sound conclusion with statistical tools,
as the two groups are highly imbalanced.

Several researchers theoretically analyzed the effect of the
imbalance on causal inference. Shalit, Johansson, and Son-
tag (2017) showed that the generalization error on CATE
is upper bounded by the imbalance. Sundin et al. (2019)
defined Type S Error, assigning a different sign (+ or -)
to CATE, and showed the probability of Type S Error is
bounded by the imbalance. Both works utilized Maximum
Mean Discrepancy (MMD, Gretton et al. (2012)) to quan-
tify and measure the imbalance.
Definition 4.3.
MMD(P,Q,F) =

supf∈FEx∼P (x) [f(x)]− Ey∼Q(y) [f(y)]
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where F is a unit ball of Reproducing Kernel Hilbert Space
(RKHS) induced by a kernel k(·, ·).

Gretton et al. (2012) showed that the MMD is equivalent
to the distance between mean embeddings in RKHS, µP and
µQ, and can be computed with the kernel function k.
Remark 4.4.

MMD(P,Q,F)2 = ||µP − µQ||2

= Ex,x′∼P (x) [k(x, x
′)] + Ey,y′∼Q(y) [k(y, y

′)]

− 2Ex∼P (x),y∼Q(y) [k(x, y)]

We show our active learning policy approximately mini-
mizes the upper bound of MMD.

Assume the probability over whole covariates is a dis-
crete distribution corresponding to the covariates in DΩ, i.e.
P = 1

NΣN
i=1δxi

. For notational convenience, we assume the
noise-less observation case σ2

ϵ = 0, but we can easily extend
the result to the noisy case. Let Pa

t = 1
|Ia

t |
Σi∈Ia

t
δxi

, a ∈
{0, 1} be an empirical distribution for treatment-control
group up to time t. Then we obtain the following theorem.

Theorem 4.5. Assume |k(x, x′)| < ∞ and |yai | < ∞
for all x, x′ ∈ X and a, i. Let λ∗ be a maximum
eigenvalue of KΩ, i.e. covariance matrix of whole co-
variates. Let M = 1

N2Σ
N
i,j=1k(xi, xj). Define functions

δ∗(In) = 1
nΣi∈In

∫
X k(xi, x)dP(x), and ϵ∗(In) = M −

1
n2Σi,j∈Ink(xi, xj), where In ⊂ {1, ..., N} is an n-element
index set. Assume ϵ∗(In) ≤ 2δ∗(In), ∀In. Then

MMD(P1
t ,P0

t ,F)2 ≤ 4
λ∗

|I1t |
+ 4

λ∗

|I0t |

+ 2

∫
X
Vt

[
Y 1(x)

]
+ Vt

[
Y 0(x)

]
dP(x)

Proof of Theorem 4.5. is in Appendix A.3. We can ob-
serve that the first two terms decrease as we observe more
subjects. The third term is our exact optimization target as
introduced in Theorem 4.1. Empirical achievability and in-
tuitive meaning of the assumption are covered in Section 5.6
and Appendix B.

By combining this result with the previous theoretical
analysis (Shalit, Johansson, and Sontag (2017) and Sundin
et al. (2019)), our active learning policy minimizes the upper
bounds of both generalization error and type S error.

Type 1 Error Minimization The precise estimation of
causal effect is an important object of causal inference.
However, testing the existence of causal effect is another
key component. R. A. Fisher first advocated the random-
ized experiment to test the existence of causal effects (Fisher
1970). He proposed Fisher’s sharp null hypothesis, where
y1i = y0i , ∀i = 1, ..., N . A randomized experiment method
should not reject the null hypothesis if it finds no causal ef-
fect. Type 1 error occurs when we reject a null hypothesis
while it is true.

As active learning is a sequential procedure, a practitioner
may want to test the statistical significance of the treatment
effect sequentially. However, Ham et al. (2023) stated that
applying statistical tests sequentially can result in a high type

1 error probability. An active learning policy should avoid
the type 1 error to make a sound conclusion.

Here we present our theoretical result that our policy min-
imizes the upper bound of the type 1 error probability. First,
we define the type 1 error.
Definition 4.6. (Type 1 Error at t) Under Fisher’s Sharp null
hypothesis, as it implies CATE(x) = 0, ∀x,

Pt [Type 1 Error(x)] = Pt

[
|Y 1(x)− Y 0(x)| > α

]
,

where α is a decision threshold.
Then we can show that our policy minimizes the upper

bound of the type 1 error rate over the whole x. Proof of
Theorem 4.7. is in Appendix A.4.
Theorem 4.7. Under Fisher’s Sharp null hy-
pothesis, arg minxt+1,at+1

∫
X Vt+1

[
Y 1(x)

]
+

Vt+1

[
Y 0(x)

]
dP(x) also minimizes the upper bound

of the
∫
X Pt+1 [Type 1 Error(x)] dP(x)

5 Experiments
In this section, we empirically analyze the theoretical re-
sults introduced in Section 4. For the comparison, we uti-
lize IHDP (Brooks-Gunn, Liaw, and Klebanov (1992) and
Hill (2011)), Boston (Harrison and Rubinfeld 1978), ACIC
(Gruber et al. 2019), and Lalonde (LaLonde 1986) data
sets. IHDP and ACIC data sets are semi-real data sets where
counterfactual outcomes are simulated. Boston and Lalonde
data sets do not contain counterfactual outcomes. Following
Addanki et al. (2022), we set Y 0 = Y 1 to simulate the null
hypothesis circumstance (i.e. CATE(x) = 0, ∀x). All data
sets have continuous outcome values as we assume the po-
tential outcome follows a Gaussian process. More detailed
explanations of data sets are in Appendix C.

We randomly divide each data set in half for every trial to
construct train and test data sets. Each active learning policy
selects what to observe from the train data set and regressors
are trained on the observed train data set. Policies are eval-
uated on the test data set for each pre-defined time step. We
utilize the following baseline policies.
• Naive: This policy randomly selects xt+1 from the sub-

ject pool and then decides treatment at+1 with Bernoulli
distribution with probability 0.5.

• Mackay (MacKay 1992): This policy selects
xt+1, at+1 = arg maxx,aVt [Y

a(x)], i.e. chooses
the most uncertain point at t.

• Leverage (Addanki et al. 2022): Under linearity assump-
tion between covariates and outcomes, this policy ex-
ploits leverage score and shows theoretical guarantees on
nearly optimal RMSE on CATE estimation. Unlike other
policies, this policy is not sequential, as a result, the ob-
served points for t and t+ 1 can be different.

• ACE (Song, Mak, and Wu 2023): Unlike
other policies, this policy assumes access to
the test data set and select xt+1, at+1 =

arg maxx,a
[

1
|ntest|Σ

|ntest|
i=1 covat [x

test
i , x]

]2
/Vt [Y

a(x)].
It maximizes the covariance between observed and test
data sets while minimizing the predictive variance.
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Figure 1: Mean of ϵPEHE . x-axis represents the observed percentage of the population. We measure ϵPEHE for every 10%
observation.

After selecting xt+1 and at+1, all policies fit the Gaussian
process for regression. We apply feature-wise normalization
and y-standardization for all regressors. (except Leverage,
which requires item-wise normalization) We fit two Gaus-
sian process models with Constant Kernel * Radial Basis
Function (RBF) Kernel + White Kernel. We optimize the
kernel hyperparameters using scikit-learn package.

All the uncertainty-aware policies (ABC3, Mackay and
ACE) use the Gaussian process to quantify the uncertainty.
For the uncertainty-quantifying kernels, we use RBF kernel
with length scale 1.0 with σ2

ϵ = 1. (We check the hyperpa-
rameter sensitivity in Section 5.4.)

Minimizing Error
We measure the ϵPEHE (not ϵΩPEHE) when observing every
10% of population. We run 100 experiments for every data
set. We mark the mean of measured ϵPEHE . The results are
in Figure 1. Appendix D presents the standard deviation of
measured ϵPEHE .

ABC3 shows the best performance, i.e. the lowest ϵPEHE

for most time steps. We can verify ABC3 succesfully min-
imizes the population ϵPEHE , though optimization target
of ABC3 is ϵΩPEHE . In most cases, when ABC3 observes
only half of the population, it achieves ϵPEHE level which is
achieved with full observation by other policies. Especially
for Boston, after 20%, ABC3 achieves ϵPEHE which Naive

policy cannot achieve even with full observation.
ACE policy shows comparable results to ABC3. ACE

slightly outperforms ABC3 for a 20-40% interval of Lalonde
data set. However, ABC3 outperforms ACE in most cases,
though ABC3 has no access to the test data set, unlike ACE.

Leverage temporarily outperforms ABC3 for the begin-
ning part of IHDP and the last part of Lalonde. However, for
ACIC, Leverage significantly underperforms other policies.
The result may imply the vulnerability of linearity assump-
tion in real-world data sets.

Mackay underperforms even Naive policy most times. It
is interesting as Mackay utilizes the same uncertainty infor-
mation as ABC3. The result may imply the importance of
proper utilization of the same information.

In summary, ABC3 is a promising Bayesian active learn-
ing policy, which efficiently and robustly achieves the best
performance among the others.

Balancing Treatment-Control Groups
Theorem 4.5 states that ABC3 theoretically minimizes the
maximum mean discrepancy between treatment and control
groups. A policy can benefit by minimizing MMD from sev-
eral theoretical aspects, as introduced in Section 4.2. We em-
pirically verify the property. We measure MMD between P1

t
and P0

t for every 10% observation and applied the same set-
ting as the previous section. We report the mean and standard
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deviation in Figure 2.

Figure 2: Mean and standard deviation of MMD between
observed treatment and control groups, P1

t and P0
t . The blue

line is for ABC3, and the orange line is for Naive policy. x-
axis is for the sampled ratio and y-axis is MMD.

ABC3 achieves substantially lower MMD compared to
Naive policy on all data sets. As noted in Theorem 4.5, the
upper bound of MMD is minimized as the number of ob-
servations increases. As a result, Naive policy also shows
a decrease in MMD as time proceeds. However, the MMD
gap between ABC3 and Naive is significant at the begin-
ning stage of experiments. The gap is especially large for
ACIC and Lalonde data sets. The result empirically supports
Theorem 4.5. holds, and ABC3 achieves a balance between
treatment-control groups.

Minimizing Type 1 Error
Theorem 4.7. states ABC3 minimizes the upper
bound of the integrated type 1 error probability,∫
X Pt+1 [Type 1 Error(x)] dP(x). Here we verify the

property empirically.
We use Boston and Lalonde data sets which assume no

treatment effect, i.e. Y 0 = Y 1. To measure the type 1
error rate, we compute a mean and standard deviation of

ˆCATE(x) for every x in the test data set. Then we im-
plement the Z test with a significance level of 5%. (i.e.
α = 1.96). Type 1 error occurs when the absolute value of
the Z-statistic is bigger than α. We compute the percentage
of x where the type 1 error occurs. The result is in Figure 3.

Figure 3: Type 1 error rate. The legend is from Figure 1.

As time proceeds, ABC3 achieves a lower type 1 error
rate, as expected in Theorem 4.7. ABC3 consistently shows
a lower Type 1 error rate than Naive. However, Mackay
shows the highest error rate on Lalonde. The result may
again imply the importance of proper utilization of the un-
certainty information.

Meanwhile, Leverage shows a significantly lower error
rate for Boston. This aspect was not presented in the original
paper (Addanki et al. 2022). The result may imply the strong
linearity in Boston data set and the power of the method
when the linearity assumption holds.

Hyperparameter Sensitivity
To implement ABC3, we need to determine uncertainty-
quantifying kernel, kernel parameters, and observation error
σa
ϵ as hyperparameters. As usual machine learning models

utilizing the kernel method, selecting an appropriate kernel
and parameters is crucial for obtaining precise estimation.
We present hyperparameter sensitivity analysis for ABC3.

For the kernel, we test RBF kernel (utilized throughout
this paper), Matern kernel, and Exp-Sine-Squared kernel
(Sine). RBF kernel has one parameter, lengthscale, which
determines how ‘local’ the output function would be. The
smaller the lengthscale, the more local and wiggler the re-
sulting function is. Matern kernel is a generalization of RBF
kernel and has two parameters, lengthscale, and smooth-
ness. Sine kernel assumes that our data shows a periodic
pattern. it has two parameters, lengthscale, and periodicity.
Here we test only lengthscale, with setting periodicity as 1.
We present ϵPEHE for each setting on IHDP data set in Fig-
ure 4.1

Figure 4: ϵPEHE for every kernel and kernel parameter. The
numbers in parenthesis are kernel parameters.

For all data sets, Matern and RBF kernels show robust
performance along different kernel parameters. However,
Sine kernel significantly deteriorates in the three data sets.
The result implies no (or week) periodicity in the three
data sets. Meanwhile, Sine kernel with a length scale of 0.1
shows the best performance on Lalonde data set. It may im-
ply a periodicity in the Lalonde data set. The result gives a
similar lesson: selecting an appropriate kernel and parame-
ters is crucial for obtaining precise estimation. Overall, RBF
and Matern kernels with ‘reasonable’ parameters are safe
options for general data sets.

We also test the hyperparameter sensitivity to σa
ϵ . The re-

sult is in Figure 5. Except the extreme case (σ0
ϵ : σ1

ϵ =
1.0 : 0.1), ABC3 shows robust performance for different
σa
ϵ s. Interestingly, 1.0 : 0.1 shows the best performance for

IHDP data set, which may imply the noisiness in the con-
trol group. However, 1.0 : 0.1 significantly deteriorates on
Lalonde data set. Overall, the equal noise setting (1.0 : 1.0),

1For the other data sets, please check the arXiv version.
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Figure 5: ϵPEHE for different σ0
ϵ : σ1

ϵ .

utilized throughout this paper, is not always the best, but a
generally safe choice.

Measuring Computation Time
Here we present the time to sample the whole train data set
of Boston data. We compute the mean and standard devi-
ation of the computation time by iterating 10 times. As a
result, Leverage shows nearly the same computation time as
Naive, while ABC3 shows a time comparable to Mackay.
ACE requires nearly twice as much time than ABC3. How-
ever, most policies require less than 1 second to sample the
whole data set. The result shows that ABC3 is a feasible pol-
icy with reasonable computation time.

Naive Leverage Mackay ACE ABC3

0.2567 0.2517 0.7595 1.6506 0.8871
(0.0321) (0.0212) (0.3803) (0.7961) (0.0373)

Table 1: Mean and standard deviation of the computation
time (in second) on Boston data set.

Empirical Validation of Assumption
In Theorem 4.5, we introduced the following assumption:
ϵ∗(In) ≤ 2δ∗(In), ∀In where M = 1

N2Σ
N
i,j=1 k(xi, xj),

δ∗(In) = 1
nΣi∈In

∫
X k(xi, x)dP(x) and ϵ∗(In) = M −

1
n2Σi,j∈Ink(xi, xj). To verify the empirical satisfaction of
the assumption, we compute and plot ϵ∗(In) and 2δ∗(In)
for data sets used in our paper. As computing all ϵ∗(In) and
δ∗(In) for all In is computationally infeasible, we compute
the value of the leading principal submatrix by randomly
permuting 100 times and present points with a minimum
value of 2δ∗(In) − ϵ∗(In). The result, shown in Figure 6,
supports the empirical satisfaction of the assumption.

6 Discussion & Limitation
ABC3 algorithm utilizes Gaussian process at its heart, hence
the improvements pertaining to Gaussian process also hap-

Figure 6: Empirical validation of the assumption (ϵ∗(In) ≤
2δ∗(In)) from Theorem 4.5. The blue line is for 2δ∗(In), the
orange line is for ϵ∗(In), and the x-axis is for n.

pen in ABC3. For example, as multiple researchers at-
tempted to extend the Gaussian Process to large data sets,
e.g. Hensman, Fusi, and Lawrence (2013) and Wang et al.
(2019), ABC3 can be extended to be more scalable. In Ap-
pendix E, we showcase a possible direction of extending
ABC3 with sample-and-optimize approach, which outper-
forms the Naive policy on a large Weather data set with
much better efficiency. This demonstrates the potential of
ABC3, which goes beyond its original design principle to
maximize the learning efficiency of the expensive and lim-
ited data set for causal inference.

Practitioners may consider using ABC3 just as an intelli-
gent sampling policy, in conjunction to external regressors
other than Gaussian process. The performance of the causal
effect estimation when ABC3 is used with a different regres-
sor, like a neural network or a random forest, is reported in
Appendix F. According to the result, the best choice of re-
gressor may depend not only on the sampling process design
but also on the data set itself, which suggests another future
research direction on designing optimal regressor given the
data set and its sampling algorithm.

Lastly, ABC3 may be used as a selective data set cleanser
that learns to avoid sampling potentially toxic observation
points. As shown in Figure 1, for Boston and ACIC data sets,
ABC3 shows the best performance when observing only a
portion of data set. The result may imply the existence of
toxic data points for CATE estimation, and ABC3 success-
fully avoids sampling those data points unless forced to sam-
ple all. We believe that more detailed analysis of this behav-
ior deserves a separate future research as well.

7 Conclusion

We present ABC3, an active learning based sampling policy
for causal inference. ABC3 minimizes the expected error of
CATE estimation from a Bayesian perspective, without vio-
lating the key assumptions in causal inference. Using maxi-
mum mean discrepancy, we prove that ABC3 minimizes the
upper bound of imbalance between observed treatment and
control groups. Moreover, ABC3 theoretically minimizes
the upper bound of type 1 error probability. ABC3 empir-
ically outperforms other active learning policies, and its the-
oretical properties as well as empirical robustness are also
validated to give additional support to the general applica-
bility of ABC3. We expect ABC3 and its extensions will
deepen theoretical insights and general applicability of ac-
tive learning on casual inference tasks.
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Harshaw, C.; Sävje, F.; Spielman, D.; and Zhang, P. 2023.
Balancing Covariates in Randomized Experiments with the
Gram-Schmidt Walk Design. arXiv:1911.03071.
Hensman, J.; Fusi, N.; and Lawrence, N. D. 2013. Gaus-
sian processes for Big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
UAI’13, 282–290. Arlington, Virginia, USA: AUAI Press.
Hill, J. L. 2011. Bayesian Nonparametric Modeling for
Causal Inference. Journal of Computational and Graphical
Statistics, 20(1): 217–240.
Jesson, A.; Tigas, P.; van Amersfoort, J.; Kirsch, A.; Shalit,
U.; and Gal, Y. 2021. Causal-BALD: Deep Bayesian Active
Learning of Outcomes to Infer Treatment-Effects from Ob-
servational Data. In Beygelzimer, A.; Dauphin, Y.; Liang,
P.; and Vaughan, J. W., eds., Advances in Neural Informa-
tion Processing Systems.
LaLonde, R. J. 1986. Evaluating the Econometric Evalu-
ations of Training Programs with Experimental Data. The
American Economic Review, 76(4): 604–620.
MacKay, D. J. C. 1992. Information-Based Objective Func-
tions for Active Data Selection. Neural Computation, 4(4):
590–604.
Rasmussen, C. E.; and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. The MIT Press.
Rubin, D. 1974. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Educa-
tional Psychology, 66.
Seo, S.; Wallat, M.; Graepel, T.; and Obermayer, K. 2000.
Gaussian process regression: active data selection and test
point rejection. In Proceedings of the IEEE-INNS-ENNS In-
ternational Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, volume 3, 241–246 vol.3.
Settles, B. 2009. Active learning literature survey.
Shalit, U.; Johansson, F. D.; and Sontag, D. 2017. Estimat-
ing individual treatment effect: generalization bounds and
algorithms. In International conference on machine learn-
ing, 3076–3085. PMLR.
Song, D.; Mak, S.; and Wu, C. F. J. 2023. ACE: Active
Learning for Causal Inference with Expensive Experiments.
arXiv:2306.07480.
Sundin, I.; Schulam, P.; Siivola, E.; Vehtari, A.; Saria, S.;
and Kaski, S. 2019. Active learning for decision-making
from imbalanced observational data. In International con-
ference on machine learning, 6046–6055. PMLR.

26776



Toth, C.; Lorch, L.; Knoll, C.; Krause, A.; Pernkopf, F.; Pe-
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