
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Bypassing Stationary Points in
Training Deep Learning Models

Jaeheun Jung , Donghun Lee

Abstract—Gradient-descent based optimizers are prone to
slowdowns in training deep learning models, as stationary points
are ubiquitous in the loss landscape of most neural networks. We
present an intuitive concept of bypassing the stationary points
and realize the concept into a novel method designed to actively
rescue optimizers from slowdowns encountered in neural network
training. The method, Bypass pipeline, revitalizes the optimizer
by extending the model space and later contracts the model
back to its original space with function-preserving algebraic
constraints. We implement the method into the Bypass algorithm,
verify that the algorithm shows theoretically expected behaviors
of bypassing, and demonstrate its empirical benefit in regres-
sion and classification benchmarks. Bypass algorithm is highly
practical, as it is computationally efficient and compatible with
other improvements of first-order optimizers. Also, bypassing for
neural networks leads to new theoretical research such as model-
specific bypassing and neural architecture search.

Index Terms—bypassing, stationary points, neural network,
gradient descent

I. INTRODUCTION

F IRST-ORDER optimization methods, such as stochastic
gradient descent (SGD) and its modern improvements

like Adam optimizer [1], are de facto methods to train deep
neural network models. Plenty of previous works analyzed
convergence of SGD algorithm and its variants [2]–[4], and
also in practice, most gradient-based training methods with
well-chosen hyperparameters will eventually find an accept-
able model [5], [6]. However, the training loss reduction
during the training process is prone to slowdowns near any
stationary points – either the correct optimal point or any other
suboptimal stationary points such as local minima or saddle
points – resulting in real-time delays.

In particular, there are large number of saddle points cor-
responding to the suboptimal solutions in the loss function
optimization with respect to a neural network model pa-
rameter, especially in a high dimensional case [7]. Hence,
efficient algorithms to escape saddle points can alleviate po-
tential delays in neural network training due to saddle points.
For example, gradient-based saddle point escaping algorithms
generally exploit weight perturbation [8]–[11], which aim to
find second-order stationary points, including local minima.
Such algorithms can be seen as making passive escapes from
saddle points, since what they do directly is to invoke random
sampling which may or may not give the wanted escape.

J.Jung is with Graduate school of Mathematics, Korea University, Seoul,
South Korea.

D.Lee is with Department of Mathematics, Korea University, Seoul, South
Korea, and is supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2020R1G1A1102828).

Fig. 1. The intuitive plot of bypass pipeline working in low dimensional
example. The dark blue-colored curve and the surface including the curve
represents the original and extended loss landscape. The colored directions
represent the movement of the parameter in each phase of bypass pipeline.

To escape saddle points actively, it is generally required to
compute the Hessian at such points to find the correct loss-
reducing direction; however, this is often impractical in neural
network models due to the large number of model parameters.

Local minima can also trap first-order optimizations without
compatible escaping tricks at suboptimal points. It is rea-
sonable to expect many local minima in most deep learning
models in practice [12], [13], since only a small group of
neural network models are free from suboptimal local minima
under specific assumptions, such as deep linear networks [14]–
[18] or shallow networks [15], [19] with square loss function.
Local minima are troublesome in neural network training,
because once gradient-based optimizers actually get trapped
at a local minimum, there are not many options to escape
from it: usual choices are random restarting or random weight
perturbation. Both are making passive escapes, as they exploit
randomness in a way unrelated to the loss function landscape
parametrized by the current model parameter.

Therefore, it is desirable to have an efficient method that
1) actively guides first-order optimization methods to escape
the slowdown near a stationary point, 2) works robustly in
the vicinity of both local minima and saddle points, and 3)
does not require additional checks to characterize the vicinity
in which the optimizer is trapped before using the method. In
this paper, we propose a novel method that complements first-
order optimizers for neural network training, based on the key
idea of “bypassing” the vicinity of a stationary point, which is
the main source of the optimizer slowdown. The intuition of
our method is visualized in Fig. 1, where the gradient-based

https://orcid.org/0000-0002-2961-4853
https://orcid.org/0000-0002-7941-2395

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

optimizer, trapped in the left-side suboptimal local minima in
the paper-facing vertical space, makes a “bypass” through an
extended space for a while, returns to the original space and
eventually reaches the right-side optimal point.

First, in Section II, we present the theoretical preliminaries
and the concept of bypassing in neural network model training,
including the explanations on opt1, opt2 and other steps shown
in Fig. 1. In Section III, we present the Bypass pipeline,
a realization of bypassing with theoretical designs to be
compatible with neural network training tasks. We then present
Bypass algorithm, our implementation of the Bypass pipeline
in Section IV, with a line-by-line walk-through and detailed
commentaries on theoretically expected behaviors. Then, in
Section V, we provide empirical evaluation results from two
benchmark tasks, designed to verify theoretically expected
behaviors and demonstrate the empirical benefits of applying
bypassing in neural network training tasks. Additionally, in
Section VI we present several ways of customizing the bypass
algorithm and corresponding experimental results showing the
effect of modification. Lastly, discussion on bypassing and
future research directions are found in Section VII, and the
conclusion follows in Section VIII.

Our Contribution

• We propose bypass pipeline, a novel method to bypass the
vicinity of a suboptimal stationary point using extension-
and-contraction strategy.

• We present a particular instance of bypass pipeline for
neural networks and a constructive method to realize it
with learnable activation.

• As a core component for bypass pipeline for neural
networks, we propose novel contraction method to bring
the extended model back to the original model space prior
to extension.

• We present a detailed algorithm that implements the by-
pass pipeline, verify its theoretically expected behaviors
and demonstrate its empirical benefit in both regression
and classification tasks.

II. THEORETICAL ASPECTS OF BYPASSING

The key idea of bypassing is to show the trapped first-order
optimizer a new loss-reducing direction, in which the “new”
direction transcends the original parameter space by extend-
ing the loss landscape with larger dimension. The concept of
bypassing begins with the presentation of the new direction
which was not viable in the original loss landscape.

This step is intuitively depicted in Fig. 1 as “moving into
the page”, which is not present in the original loss function –
the W-shaped dark blue-colored curve facing the page.

Once the optimizer realize new direction in extended space,
it will be able to continue the training by following gradient
signal as it would no longer trapped in vicinity of stationary
point.

After getting advantage in extended space, it would be
necessary to restore the model and loss landscape to prior
one, to avoid violation on objective optimization problem.

D1

D1 D2 D2 D1

D2 D1

train1

embed train2

opt1

proj

train3

opt2

Fig. 2. Flowchart of the bypass pipeline. When train1 arrives near the
stationary point, the horizontally illustrated processes(embed, opt1, opt2 and
proj) allows to bypass the stationary point by finding learning trajectory in
extended space. Finally, the train3 in original parameter space D1 continues
the training.

Based on those intuitive concepts, we propose Bypass
pipeline for training deep learning models through first-order
gradient-based optimizers in this section, with theoretical
preliminaries.

A. Intuition of Bypassing

A (neural network) model is considered to be a parametriza-
tion of (continuous) functions denoted as:

φ1 : D1 −→ F
θ 7−→ fθ

(1)

where D1 is real parameter space and F is a function space.
We define functional L : F −→ R that measures the

difference between how the current parametrized function
approximates the given data and the best possible function or
distribution using the given data. Then, training a model φ1

can be seen as solving the following minimization problem:

minimize
θ∈D1

L1(θ), (2)

where L1 = L ◦ φ1. Almost all methods of training modern
deep learning models relies on first-order gradient based
optimization methods.

Now, we introduce another model φ2 : D2 → F , which
is an extension of the first model φ1 such that Im(φ1) ⊆
Im(φ2). We use ω to denote elements of D2 in rest of the
paper, in order to distinguish it from θ ∈ D1,

Defining L2 = L ◦ φ2, we recast (2) as the following
constrained minimization problem:

minimize
ω∈D2

L2(ω)

subject to ω ∈ φ−1
2 (Im(φ1))

(3)

This reformulation is not only equivalent to (2) in sense of
global minima but also advantageous when the local behavior
of a first-order optimizer in D1 is problematic. For example,
local behaviors in solving (2) such as slow convergence speed
or problematic local geometry is not necessarily preserved
when a comparable optimizer operates in the extended space
D2 as shown in (3).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

B. Bypass pipeline

The key idea of the Bypass pipeline is “bypassing” via an
extended parameter space, which 1) sends the parameter vector
to an extended parameter space, 2) trains it within the extended
space, and 3) contracts the model (or the extended parameter
space) to original one. Precise description of each step follows
in this subsection.

To send the parameter vector θ ∈ D1 to the extended
parameter space, we need to define the embedding map as
follows:

Definition 1.
embed : D1 −→ D2

θ 7−→ ω
(4)

such that φ2 ◦ embed = φ1. This embedding map glues the
D1 to D2 and hence generate attached (topological) space. We
identify every points θ in original space D1 as a point ω in
D2 via embed, with φ1(θ) = φ2(ω).

As conceptually illustrated in Fig. 1 and described as a
flowchart in Fig. 2, our Bypass pipeline starts with model φ1

with initialization θ0, 1) trains the model using given data
until the convergence to get θ∗, 2) extends the model by
embedding the model parameter θ∗ to the extended parameter
ω0 = embed(θ∗) and start to solve constrained minimization
problem (3) by train2 and get ω∗ such that φ2(ω

∗) ∈ Im(φ1),
and finally 3) brings the extended parameter ω∗ to θ =
proj(ω∗) which is in D1 using projection map proj, with
existence assumption and definition below, and continue to
train with train3 in original parameter space.

Definition 2. We define a projection map proj given original
model φ1 and its extended model φ2 as

proj : φ−1
2 (Im(φ1)) −→ D1

ω 7−→ θ
(5)

which satisfies φ2 = φ1 ◦ proj on φ−1
2 (Im(φ1))

Notably, θ = proj(ω∗) need not be a stationary point of L1

in D1, so it is possible to continue the training with respect
to proper training schedule. We denote this continual training
as train3.

To implement the Bypass pipeline given the original model
φ1, the following components are required in computable
form:

1) Extended model φ2 : D2 → F and embed function
2) Defining equation of φ−1

2 (Im(φ1)) to construct a suit-
able projection map

3) Constrained optimization algorithm train2 to find ω∗ in
φ−1
2 (Im(φ1))

We discuss the theoretical requirements of these components
in the next section with implemenation method in neural
networks.

III. BYPASS PIPELINE FOR NEURAL NETWORKS

In this section, we focus on neural network models and
describe a method to implement the three required components
of the Bypass pipeline.

Definition 3. We define φ1 be a deep neural network model
that contains two consecutive fully-connected layers, which
are considered as a submodule. For such a submodule, we
use the following notations:

1) Let φ1 be a submodule that consists of two fully-
connected layers.

2) Let sI be the dimension of input vector to the submod-
ule, and sW , sA the numbers of nodes on each layer,
respectively.

3) We denote σW and σA be the activation functions of
each layer.

4) Let W, bW be the weight and bias parameters of the first
layer and A, bA be the weight and bias of the second
layer of the submodule. Then the submodule can be
parametrized as

φ1(W, bW , A, bA) : x 7→ σA(bA +AσW (bW +Wx)).
(6)

Many deep learning models can be φ1. For example, fully
connected feedforward networks are in itself covered, and
many modern deep learning models with prediction head are
covered.

A. Model extension and embedding

To transform a deep learning model φ1 to an extended
model φ2, we replace a submodule φ1 of φ1 with an extended
submodule φ2. The parameters θ of φ1 are represented as
θ = (θ̃,W, bW , A, bA), where θ̃ contains all parameters of φ1

not associated to submodule φ1.
While extending φ1 into φ2 with additional parameters D,

we need to consider following requirements, which represents
existence of embed and loss-reducing direction in D2.

1) Given θ, ∃D : φ2(D, θ) = φ1(θ)
2) ∇θL1 = 0 doesn’t imply ∇ωL2 = 0

There are many ways to implement φ2 with those require-
ments, such as adding new neurons or layers, but we propose
to utilize a specific class of learnable activations

ψW (xj) = δjxj + σW (xj), (7)

where xj is jth entry of input vector x to the original
submodule φ1, and δj is corresponding coefficient parameter
found in the extended submodule φ2. This can be represented
concisely as:

ψW (x) = Dx + σW (x) for D = diag(δ1, · · · , δsW). (8)

The extension via ψW is the simplest one in learnable
activations which satisfy the requirements. With unspecified
learnable activation h(D,x), the first requirement is now have
following form:

∃D∀x : h(D,x) = σW (x) (9)

or equivalently ∃D : h′(D,x) = 0 with h′ = h − σW . Due
to second requirement the h′ must include x-valued term and
hence the simplest choice here is Dx, which corresponds to
ψW . This construction was directly motivated from the concept

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

of homotopy from σW to another function which gives an
extension, since h(0, x) = σW (x) and extended model with
h(D,x) and D ̸= 0 will lie outside of Im(φ1). Note that any
other choice of h′ with those requirements can induce a proper
bypass pipeline.

Given an extension ψW , the embed map can be defined by
setting D = 0:

embed : D1 −→ D2

θ 7−→ (θ, 0) = ω0

(10)

Since ψW is equivalent to σW when D is given by
zero, φ1 ◦ embed = φ2. Similar to θ, we denote ω =
(θ̃,W, bW , A, bW , D) to represent the extended parameter.

B. Comeback constraint and proj

In general, the constrained optimization problem (3) is hard
to solve due to its unknown constraint set φ−1

2 (Im(φ1)).
To avoid the deadlock, we refine the problem with smaller
constraint set which is algebraic and strictly larger than
embed(D1). The following theorem provides a method to
refine the problem.

Theorem 1.

embed(D1) ⊊ V (ADW) ⊆ φ−1
2 (Im(φ1)) (11)

for
V (ADW) := {ω ∈ D2 : ADW = 0}. (12)

recall that ω = (θ̃,W, bW , A, bA, D).

Proof. Since embed(D1) = V (D), first inequality is trivial
because D = 0 implies ADW = 0 in matrix multiplication.

For the second inequality, consider the logits provided by
the second activation σA. It would be given with

φ2(W, bW , A, bA, D)(x)

= σA(bA +AψW (bW +Wx))

= σA(bA +AD(bW +Wx) + σW (bW +Wx))

= σA(b
′
A + σW (bW +Wx))

= φ1(W, bW , A, b′A)(x)

(13)

where b′A = bA+ADbW . This shows that ω ∈ φ−1
2 (Im(φ1))

if ADW = 0.

With Theorem 1, we induce the refined minimization prob-
lem:

minimize
ω∈D2

L2(ω)

subject to ω ∈ V (ADW)
, (14)

and the corresponding projection map proj as a degree-3
polynomial map from the proof.

proj : V (ADW) −→ D1

(θ̃,W, bW , A, bA, D) 7−→ (θ̃,W, bW , A, bA +ADbW)
(15)

Since the proj is defined to be the polynomial map, this
can be easily extended to entire D2, and hence we can apply
the projection when ADW is not zero but close to V (ADW).

Note that the minimization problem (14) is also equivalent
to the original minimization problem (2) in sense of global
minima too.

C. Constrained optimization train2

To complete the Bypass pipeline, we need an algorithm to
solve the constrained optimization problem (14):

minimize
ω

L2(ω)

subject to ADW = 0
, (16)

as train2 process introduced in Fig. 2.
We propose to split the train2 into two parts, opt1 and

opt2, as shown in Fig. 2, that correspond to unconstrained
optimization and constrained optimization, respectively. Since
the gradient ∇ωL2(ω0) is nonzero, it is expected that the
unconstrained optimization opt1 can reduce the loss value with
proper step size. After applying opt1, the parameters opt1(ω)
will not be in φ−1

2 (Im(φ1)) in general and thus we construct
opt2 to let ω move toward V (ADW).

To construct opt2, we propose to use a modified loss
function parametrized by new hyperparameter γ(t), which will
be updated during the training:

L̄(ωt) = L2(ωt) + γ(t)∥ADW∥, (17)

with adaptive γ(t) such that limt→∞ γ(t) = ∞ where t
represents the number of training steps.

When opt2 is run with a gradient-descent based optimizers,
the parameters ωt in train2 approaches V (ADW) as the
gradient of second term γ(t)∥ADW∥ gives direction toward
V (ADW), the set of parameters whose ADW = 0 as defined
in Theorem 1. This behavior is guaranteed because ∥ADW∥
only has the global minimum 0 (shown in the following
Theorem 2), as long as γ(t) is kept large enough to cancel
out the effect of L2 term.

Theorem 2. For real matrices A ∈ Rm×n,W ∈ Rn×l and
diagonal matrix D ∈ Rn×n such that ADW ̸= 0, then

∇∥ADW∥ ≠ 0. (18)

Proof. Suppose that there exist (A,D,W) such that
∇∥ADW∥(A,D,W) = 0 but ADW ̸= 0. Define
f(A,D,W) = ∥ADW∥2 then

∇f = 2∥ADW∥∇(∥ADW∥) if ∥ADW∥ ≠ 0 (19)

and hence
∇f(A,D,W) = 0. (20)

On the other hand, it follows from f(A,D,W) =∑m
s

∑l
t(ADW)2s,t that

∇f = (ADWWTD, I⊙(WWTDATA), DATADW) (21)

for element-wise product ⊙.
Therefore we have

ADWWTDTAT = (ADW)(ADW)T = 0 (22)

on (A,D,W) because D is diagonal and (20).
Since all matrices are real, we conclude ADW = 0 which

contradicts the assumption. Therefore, if ADW ̸= 0 then
∇∥ADW∥ ≠ 0.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Therefore, opt2 on ωt will ensure the following condition
asymptotically:

ω∗ = lim
t→∞

ωt ∈ V (ADW) ⊆ φ−1
2 (Im(φ1)). (23)

In practice, the trajectory of the first-order gradient based
optimizers may become unstable when large γ(t) is used, for
example, due to increased step size if the learning rate of the
optimizer is fixed. Using adaptive optimizers, such as Adam
[1], helps mitigating this issue.

IV. BYPASSING ALGORITHM

Algorithm 1 Bypass Algorithm

1: Input θ∗ = (θ̃∗,W, bW , A, bA), λ, λ
′,L2, ϵ, n, γ

2: Extended model params ω0 = (θ̃∗,W, bW , A, bA, 0)
3: for i = 1 to n do
4: ωi ← Optimizerλ(ωi−1,L2)
5: end for
6: t← 0
7: repeat
8: ωn+t+1 ← Optimizerλ′ (ωn+t,L2 + γ(t)∥ADW∥)
9: t←− t+ 1

10: until ∥ADW∥ < ϵ
11: θ ←− proj(ωn+t)
12: return θ (and continue to train3 in bypass pipeline)

In Algorithm 1, we present an implementation of the bypass
pipeline described in Fig. 2, whose theoretical properties are
analyzed in Section III. In particular, the line 2 of Algorithm 1
corresponds to the embed step, lines 3-5 to the opt1 step,
lines 6-10 to the opt2 step, and line 11 to the proj step of
the bypass pipeline. The Optimizerλ(ω,L) in Algorithm 1
denotes invoking an iteration of a gradient-based optimizer
with learning rate λ and loss function L with respect to
model parameters ω. All other symbols correspond to the same
symbols found in Section III.

The algorithm starts with the given model φ1, defined by the
input parameter θ∗, which is the result of train1 step of the
bypass pipeline. It is reasonable, but not necessary, to consider
that θ∗ is near a stationary point, witnessed by the slowdown
of loss reduction in train1 step.

Then, in line 2, the model is extended into φ2 by predefined
embedding map embed in (10). This extension of parameter
space into D2 will induce immediate growth of gradient
norm and loss reduction since the directional derivative along
additional parameters would be nonzero, even if the gradient
vanishes in original space D1.

As the parameter space D2 have been extended by embed,
even if θ∗ were exactly on a stationary point, the starting point
ω0 = embed(θ∗) will be no longer a stationary point in the
extended space D2. In lines 3-5, the opt1 step, the algorithm
performs n iterations of Optimizerλ(ω,L2), allowing the
gradient-based optimizer to escape from the vicinity of the
stationary point by simply continuing to follow the gradient
and further reduce the loss. We verify this expected reduction
of the loss during opt1 step in Section V.

Then the Bypass algorithm proceeds to opt2 step (lines 6-
10), where a modified loss function L = L2 + γ(t)∥ADW∥
is minimized. Since during the opt2 step gradually increases
the relative weight of ∥ADW∥ with adaptive γ(t), repeated
optimization iterations in line 8 eventually bring the extended
parameter ω back to ϵ-close vicinity of φ−1

2 (Im(φ1)). Hence,
the ∥ADW∥ value and the distance between ω and the starting
point θ∗ are expected to decrease during this return of ω, as
predicted in the theoretical analysis. At the same time, the loss
L2 may increase due to the additional constraint. Therefore,
we empirically verify the expected behaviors of opt2 step as
well in Section V.

The proj step of the bypass pipeline follows. Once the
extended parameters ω arrive ϵ-close to φ−1

2 (Im(φ1)) in terms
of ∥ADW∥ (line 10), we can invoke the method shown
in (15) that projects ω to D1. The line 11 of Algorithm 1
implements the projection of ω ∈ V (ADW) ⊂ D2 onto the
original model’s parameter space D1. The resulting parameter
θ satisfies ∥ADW∥ = 0 but ω only ∥ADW∥ < ϵ, so there
may be a jump in the loss L2 before and after the proj step.
Also, the projection from ω to θ, even if ω is ϵ-close in terms
of ∥ADW∥, can cause a relatively large change of position
in the extended parameter space D2, due to the additive
term ADbW introduced to bA by proj as shown in (15).
The abovementioned expected behaviors are also empirically
verified in Section V.

The output parameter θ of Bypass algorithm is not nec-
essarily another stationary point. Therefore, according to the
bypass pipeline, we recommend continuing train3 step, in
which further optimization or training of the neural network
model in original parameter space D1 takes place. We expect
the bypass algorithm to generate θ that does not revert back to
the vicinity of θ∗, the starting stationary point, even when the
same gradient-based methods used in train1 is used in train3.
The expected behavior of θ after train3 is also empirically
verified in Section V.

A. relaxed bypass algorithm

The bypass algorithm was built on assumption of two con-
secutive dense layers. Some classes of modern deep learning
models are not covered, due to model structure containing
residual connection or layer of different type. Instead of
implementing structure-dependant bypass algorithm, we can
relax the requirement of two consecutive dense layer by
modifying Algorithm 1.

Without consecutive layer assumption, we can construct
bypass algorithm by defining φ2 and embed equivalently with
learnable activation and solving

minimize
ω

L2(ω)

subject to D = 0
, (24)

instead of (16), since D = 0 also implies that ω ∈ D2. With
this relaxed constraint, we will adapt following changes for
the bypass algorithm:

1) opt2 will minimize L2 + γ(t)∥D∥ instead of L2

2) proj becomes trivial and linear. Now the proj maps
ω = (θ̃,W, bW , A, bA, D) to (θ̃,W, bW , A, bA).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

0 50000 100000 150000 200000 250000 300000 350000
steps

17000

17500

18000

18500

19000

19500

20000

lo
ss

baseline
bypass
opt1
opt2

(a) Loss values for full training process

140000 150000 160000 170000 180000 190000 200000 210000
steps

0.000

0.005

0.010

0.015

0.020

0.025

AD
W

_s
um

baseline
bypass
opt1
opt2
threshold

(b) ∥ADW∥ for train2

0 50000 100000 150000 200000 250000 300000 350000
steps

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

st
ep

_s
ize

baseline
bypass
opt1
opt2

(c) Step sizes λ∥∇ωL2(ωt)∥

150000175000200000225000250000275000300000325000350000
steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

tra
je

ct
or

y_
di

st

baseline
bypass
opt1
opt2

(d) L2 distance from θ∗

Fig. 3. Dynamics of Eggholder regression task using gradient descent, with or without bypassing. The grey and purple-colored areas correspond to the opt1
and the opt2 steps of bypassing, respectively. Fig. 3a illustrates the change of loss values L(ωt) during the training process. Fig. 3b shows the change of
∥ADW∥ in the train2 step of bypassing. Fig. 3c shows the actual change size of parameter values ∥ωt+1 −ωt∥ during gradient descent iterations. Fig. 3d
plots the distance ∥θ∗ − ωt∥ from the staring point θ∗ = ω0 of the bypassing.

The new objective function L2+γ(t)∥D∥ still converges to
V (D) when γ(t) cancels out the effect of L2 term, since ∥D∥
is convex. We show the relaxed bypass algorithm also works
with Resnets [20], in Section VI-C

V. EXPERIMENTS I: BYPASSING BEHAVIORS

We examine the dynamic behaviors of the loss and other
parameters from neural network training with bypassing, in
order to verify empirically the expected behaviors of the
Bypass algorithm discussed in Section IV. When needed, we
contrast the results between “Baseline” case (without Bypass)
and “Bypass” case (baseline method with Bypass algorithm).
To demonstrate empirical usefulness of Bypass algorithm,
we present two benchmark neural network model training
scenarios: A) a regression task using the eggholder function,
and B) a classification task using CIFAR10 dataset.

A. Regression: Eggholder with Gradient Descent

We consider a small neural network with minimal nonlin-
earity and a regression task to approximate a synthetic dataset.
This task is designed to verify the expected behavior and
demonstrate the advantage of using the Bypass algorithm with
a gradient-based training algorithm. Therefore, to elucidate
the theoretical insights from the empirical result as much as
possible, this scenario is designed to rule out many stochastic
noises such as those in the dataset and the training algorithm.

The regression objective is to approximate the eggholder
function, a bivariate real function with an intricate eggholder-
like shape, defined as:

Eggholder(x1, x2) = −x1 sin(
√
|x1 − x2 + 47|)

+(−x2 + 47) sin

(√
|x2 +

x1
2

+ 47|
)
.

We choose the eggholder function to be the approximation
target since it contains many local minima by construction.

The neural network model φ1 in this experiment is com-
prised of three layers, with ten nodes on each hidden layers, in
which RELU activations are used for the second hidden layer.
Our model φ1 is chosen to be small (10-node-wide, 3-layer-
deep), such that the underparametrized model may admit many
stationary points in the loss function surface of approximating
the eggholder function, which contains many local minima.

We construct a synthetic Eggholder dataset Degg by sam-
pling 100 points from a square shaped domain (−250, 250)2
and their eggholder function values, resulting in a collection
of (x⃗, y), where x⃗ = (x1, x2) and y = Eggholder(x1, x2).

1) Experiment Design: The baseline case trains the model
φ1 with a full-batch gradient descent on Degg the eggholder
dataset with mean-squared-error (MSE) loss function, which
is a reasonable choice of loss function for regression tasks.
We set the learning rate for all gradient descent iterations to
be fixed at 3 × 10−8, and continue iterations until the loss
reduction slows down to obtain θ∗. Obtaining θ∗ marks the
end of train1 step, but for the baseline method, the training

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

simply continues and eventually generates a training trajectory
that corresponds to the baseline case, in which bypassing at
θ∗ is not performed.

The bypass case is initialized exactly the same as the base-
line method to facilitate comparison between the two cases.
This includes all hyperparameters in the baseline gradient
descent method. Once the apparent slowdown of the train1
gradient descent happens and θ∗ is obtained, the difference
between the baseline case and the bypass case appears. The
Bypass algorithm is invoked to attempt escaping from the sta-
tionary point in the vicinity of θ∗. Once the Bypass algorithm
completes, train3 step restarts, with the exactly same setup
as the baseline case but at θ, a different location from θ∗

where the bypassing started. Hyperparameters for the Bypass
algorithm are set as follow: γ(t) = 0.6t, and ϵ = 10−4, the
learning rate λ′ for opt2 to be same with learning rate of the
baseline method.

2) Results and Interpretation: Bypassing reduces the loss
significantly, as shown in Fig. 3a where the baseline loss
trajectory is slowed down after 100k iterations, but the bypass
loss trajectory decreases significantly after bypassing, which
begins at 150k iteration point. In particular, the bypass loss
trajectory dips down as opt1 progresses, which is the first
expected behavior of bypassing, as the embed step affects to
the model weights and gradient to escape from the vicinity of
stationary point. Also, during the opt2 step, the rebound of the
bypass loss trajectory is observed, an expected behavior since
the opt2 objective function L defined in (17) introduces an
additional γ(t)∥ADW∥ term. Recall that the hyperparameter
γ(t) is set to increase with t, which increases opt2 proceeds,
so it is natural for the loss trajectory to increase in opt2 near
its end.

Additionally, the trajectory of ∥ADW∥ during the bypass-
ing, shown in Fig. 3b, confirms that the Bypass algorithm
works according to its theoretical foundations. The trajectory
of ∥ADW∥ confirms the key intended behavior of bypassing:
the model parameter ω moves away from the initial model
space D1 during opt1, and eventually returns to the vicinity
of D1 in terms of ∥ADW∥ as opt2 proceeds. Unlike opt2 in
which the optimization has gradually increasing regularization
term γ(t)∥ADW∥, opt1 is not affected by ∥ADW∥ value
and allows ω wanders away from the stationary point (de-
creasing loss) into the newly extended model space (increasing
∥ADW∥).

From the perspective of each iteration in gradient-based
optimizer, as shown in Fig. 3c, the baseline and the bypass
trajectories are significantly different. In Fig. 3c, we plot the
trajectory of the norm of the full gradient ∥∇ωL2(ωt)∥, which
shows how “wide” each steps taken in each iteration. Since
ωt+1 = ωt − λL2(ωt), the plotted values are interpreted as
∥ωt+1 − ωt∥. Once bypassing begins with opt1, the bypass
trajectory shows wider steps than the baseline counterpart,
and this is an evidence on empirical effectiveness of Bypass
algorithm in escaping from the stationary point θ∗ where the
model was at the 150k-th step. Another interesting observation
is that the bypass trajectory shows much larger stepsize even
after opt2 step when the bypassing is completed and the
parameter is back to the original model space D1. Wide steps

even after returning to the original model space is not expected
from theoretical analysis but empirically evident in Fig. 3c,
and its effect is clearly reflected in the bypass loss trajectory
in Fig. 3a.

Fig. 3d shows how the distance of the model parameters
changes from the starting parameter θ∗ of bypassing. First,
we directly verify that bypassing leads to ωt that is different
from the start point θ∗. Also, the bypass method leads to a
different parameter point from the baseline method after the
same number of iterations as shown in the difference at the end
of opt2 step. Moreover, achieving the design purpose, Bypass
algorithm actually led to a significantly different attraction
point, as the distance difference between the bypass trajectory
and the baseline trajectory widens as train3 proceeds in the
original space D1 with the same gradient descent algorithm.

B. Classification: CIFAR10 with Minibatch SGD

In this classification task, we demonstrate the effect of
Bypass algorithm to stochastic gradient descent (SGD) with
minibatches. CIFAR10 dataset [21] contains 60k images across
10 classes with a predefined train-test split which has been
widely used as a benchmark dataset for multi-class image
classification task. We use the provided dataset split and 10-
class-classification task as the goal of this task.

We modify 2c2d model from DeepOBS [22] to use it
as the classifier in this task. The 2c2d model, composed
of two-convolution layers and two-dense layers with ReLU
activations, contains total of 1,703,370 learnable parameters.
We introduce 1,024 learnable parameters to 2c2d model to
allow bypassing. Also, we modify the input channels of 2c2d
model to accept the images from CIFAR10.

1) Experiment Design: As the baseline case, we train
vanilla 2c2d model on CIFAR10 classification task using
Adam optimizer as a minibatch SGD optimizer with batch
size 128 and constant learning rate 0.004. Cross-entropy loss
with weight decay of 0.005 (equivalently, with regularization
loss term 0.005∥θ∥22) is used. We train the model up to epoch
500 and use the parameter as the starting point θ∗ for Bypass
algorithm. The loss function and the training accuracy, as
shown in the blue line plots of Fig. 4a and Fig. 4d with noise
due to minibatching, suggest that the training process may
be near a suboptimal stationary point. Using θ∗ from epoch
500, we perform 20 independent trials of baseline training to
account for the innate randomness in minibatch SGD.

The bypass case invokes Bypass algorithm at θ∗ with ϵ =
5 × 10−6 and γ(t) = 0.005t. All the other settings were set
to be the same as the baseline case. To ensure the 20 trials of
bypassing are independent, both SGD and Bypass algorithm
are initialized with different random seeds at the 500th epoch.
Note that the scale of noise in loss and accuracy looks to be
decreased after epoch 500 because they’re averaged over 20
repetitions.

2) Results in Model Performance: Similar to the eggholder
regression task, bypassing improves the empirical performance
of the 2c2d model by rescuing it from the local suboptimality.
The Adam optimizer with minibatch does not rescue the model
from the local suboptimality, which is clearly shown in the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

0 250 500 750 1000 1250 1500 1750 2000
epochs

1.26

1.28

1.30

1.32

1.34

1.36

1.38

1.40

ca
te

go
ric

al
_c

ro
ss

en
tro

py

baseline
bypass
opt1
opt2

(a) loss value L2(ω) (or L1(θ))

600 800 1000 1200 1400 1600 1800 2000
epochs

0.02

0.00

0.02

0.04

0.06

0.08

0.10

ad
va

nt
ag

e_
ca

te
go

ric
al

_c
ro

ss
en

tro
py

train
test
opt1
opt2

(b) Loss advantage ∆L2

400 500 600 700 800 900 1000 1100
epochs

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

AD
W

_s
um

1e 3
baseline
bypass
opt1
opt2

(c) ∥ADW∥

0 250 500 750 1000 1250 1500 1750 2000
epochs

0.52

0.53

0.54

0.55

0.56

0.57

0.58

ac
cu

ra
cy

baseline
bypass
opt1
opt2

(d) Accuracy of ωt

600 800 1000 1200 1400 1600 1800 2000
epochs

0.04

0.03

0.02

0.01

0.00

0.01

0.02

ad
va

nt
ag

e_
ac

cu
ra

cy
train
test
opt1
opt2

(e) Accuracy difference ∆Acc

0 250 500 750 1000 1250 1500 1750 2000
epochs

0.01

0.02

0.03

0.04

0.05

gr
ad

_n
or

m

baseline
bypass
opt1
opt2

(f) Step sizes λ∥∇ωL2(ωt)∥

Fig. 4. Training results of baseline and bypassing in CIFAR10 classification task. Gray shaded epochs correspond to the opt1 step, and purple to the opt2
step of bypassing. All plots from 500th epoch are averages over 20 repetitions, with their sample standard deviation as the error bar shades. Fig. 4a compares
the training set loss trajectories. Fig. 4b plots both the training loss and the test loss advantages per epoch, which is the difference of each loss by the model
from the bypass case and the model from the baseline case. Fig. 4c shows the trajectory of ∥ADW∥ during bypassing. Fig. 4d compares the training set
accuracy trajectories. Fig. 4e plots both the training accuracy and the test accuracy advantages per epoch, in which advantages are computed in the same
manner as Fig. 4b. Fig. 4f compares the trajectories of λ∥∇ωL2(ωt)∥, in which ωt is the parameter at the end of epoch t, obtained from learning the training
set. This value can be seen as the cumulative step size of epoch t.

baseline loss trajectory in Fig. 4a. Applying Bypass algorithm
allows the same optimizer to escape the suboptimal region and
achieve much lower loss value, as shown in the bypass loss
trajectory in Fig. 4a. This reduction in loss translates to the
improved classification accuracy in the bypass case as shown
in Fig. 4d.

3) Results in Bypassing Behavior: Specific behaviors of
the bypass trajectory during opt1 step are in accordance to
the theoretical properties of bypassing and the empirically
observed results of Bypass algorithm in the eggholder task.
Reduced loss (Fig. 4a) and increased model performance
(Fig. 4d) are achieved in opt1 as the model parameters move
away from the original model space, which is clearly shown by
the increase in ∥ADW∥ (Fig. 4c). In opt2, the model returns
to the original model space as its ∥ADW∥ decreases (Fig. 4c),
during which the loss and the performance improvements are
affected negatively.

The overall empirical improvements of using Bypass al-
gorithm is significant, both immediately after bypassing and
through the subsequent train3 step. When the model com-
pletes bypassing near the end of opt2 with ∥ADW∥ = 0
around 1045th epoch (Fig. 4c), the model consistently returns
to the original model space with significantly lower loss
(Fig. 4a) and higher accuracy (Fig. 4d) than the baseline
trajectory averages. Note that both the loss and the accuracy
plots validate the expected behavior that the model with
Bypass algorithm escapes from the stationary vicinity from

which the model could not escape in the baseline trajectory.
Since CIFAR10 dataset offers predefined training/test set

split, we also verify the generalizability of empirical improve-
ments of Bypass algorithm. We plot the difference between
the performance of the models from the bypass case and
the baseline case, from the training set and the test set of
CIFAR10, in terms of loss (Fig. 4b) and accuracy (Fig. 4e).
As shown in the two figures, the loss reduction and the
performance improvements from the training set is reflected
to the test set trajectory, which strongly suggests that the
empirical benefit of using Bypass algorithm on training set
generalizes to the test set performance as well.

To provide additional insights on how the expected behavior
of bypassing materializes under the innate randomness of
minibatch SGD, we plot the trajectories of the learned model
parameters from both the baseline case (θt) and the bypass
case (ωt) in Fig. 5. In particular, to consistently plot both
parameter trajectories across the bypassing and the baseline
epochs, we compute all parameters’ norms in the extended
parameter space D2.

First of all, applying minibatch SGD with bypassing con-
sistently leads to significantly different final model parameter
from applying only minibatch SGD. As shown in Fig. 5a,
there is a significant difference in the average of L2 distance
trajectories of model parameters from the bypass and the
baseline cases that started at the same location θ∗ on epoch
500. The increase in L2 distance during opt1 and the decrease

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

600 800 1000 1200 1400 1600 1800 2000
epochs

0

10

20

30

40

tra
je

ct
or

y_
l2

_d
ist

baseline
bypass
opt1
opt2

(a) L2 distance from θ∗

600 800 1000 1200 1400 1600 1800 2000
epochs

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tra
je

ct
or

y_
an

gu
la

r_
di

st

baseline
bypass
relative
opt1
opt2

(b) cosine of angular distances

600 800 1000 1200 1400 1600 1800 2000
epochs

0.4

0.2

0.0

0.2

0.4

re
la

tiv
e_

co
sin

e_
sim

ila
rit

y

opt1
opt2

(c) diverse trajectories

Fig. 5. Measurements of the training trajectory θt and ωt, the model parameters of baseline and bypass case at epoch t, respectively. Gray shaded area and
purple colored area represents the opt1 and opt2 respectively. Gray shaded epochs correspond to the opt1 step, and purple to the opt2 step of bypassing.
The plot value and its error bar shades in Fig. 5a and Fig. 5b are the average and the sample standard deviation from 20 repeats. Fig. 5a plots the L2 distance
∥θ∗ − θ∥, between the model parameter immediately before bypassing starts θ∗ and the current model θ, which may be θt or ωt depending on the epoch
and the case. Fig. 5b plots the cosine values of three angles over epochs – “baseline” showing ∠θ∗Oθt, “bypass” showing ∠θ∗Oωt, and “relative” showing
∠θtθ∗ωt. Fig. 5c plots the individual trajectory of “relative” ∠θtθ∗ωt from different trials of bypassing,

during opt2 are also expected, similar to the behavior captured
by the ADW norm trajectory shown in Fig. 4c.

We observe significant difference not only in the L2 distance
but also in terms of angular distance between the parameters
from the baseline and the bypass direction, as shown in
Fig. 5b. The “baseline” trajectory of cos(∠θ∗Oθt) staying near
1 means θ∗ and θt stay in the same direction from the origin
O, which implies that the direction of minibatch SGD in the
baseline case does not change much over 1500 epochs. On the
other hand, the “bypass” trajectory of cos(∠θ∗Oωt) in Fig. 5b
directly confirms how the behavior expected according to
the theoretical analysis of bypassing interacts with minibatch
SGD:

• In opt1 step of bypassing, the model parameter ωt moves
away from θ∗ in the direction out of the original model
space D1, in which θ∗ and θt are confined. The deviation
of the “bypass” trajectory from the “baseline” trajectory is
partially attributed to the fact that the angles behind each
trajectory involve the origin O that may be relatively far
away from θ∗.

• In opt2 step of bypassing, the angular distance be-
tween ωt and θ∗ decreases, which may be partially due
to the minimization objective function in opt2 encour-
ages ∥ADW∥.However, even at the end of opt2, when
∥ADW∥ is reduced to ϵ as shown in Fig. 4c, it is notable
that the cosine value is significantly different from 1.
Hence, Bypass algorithm generates the return points that
are consistently different not only in terms of distance
(Fig. 5a) but also in terms of the angular direction from
the origin (Fig. 5b).

Direct angle between θt and ωt are captured by “relative”
trajectory, which is the average of cos(∠θtθ∗ωt) over 20 trials.
Note that the cosine value average drops down much faster
than the “bypass” trajectory, because “relative” trajectory cor-
responds to the angle ∠θtθ∗ωt measured not from the origin O
but from the bifurcation point θ∗ between the bypass case and
the baseline case. Also, the average of the cosine value tending
to 0 throughout subsequent train3 suggests that the first-order
optimization parameter trajectory tends to directions vastly

different from the baseline trajectory, which is empirically
verified with the 20 different trajectories shown in Fig. 5c.
Additionally, the diversity of trajectories in Fig. 5c suggests
that the empirical effect of Bypass algorithm is much more
complex and far-reaching than applying random perturbations
towards different directions.

VI. EXPERIMENTS II: BYPASS ALGORITHM IN PRACTICE

The bypass pipeline and algorithm have multiple compo-
nents to be customized. For example,

1) The hyperparameters n, γ(t) and ϵ for opt1 and opt2.
2) The starting point θ∗ of the bypass algorithm.
3) The bypass pipeline, which consists of three components

explained in Section II-B
In this section, we show alternative experimental results

when various modifications are applied. In Section VI-A, we
show an sensitivity analysis for hyperparameters proposed in
Algorithm 1, compared to the results in Section V-B. We
then show what happens if the starting point θ∗ is changed
to the early stage of the training, which is not empirically
converged, by showing a result of extreme case θ∗ = θ0 in
Section VI-B with same problem of Section V-B. Lastly, we
consider Resnet model with different bypass pipeline, which
employs relaxed bypass algorithm explained in Section IV-A
on multiple number of activations, to show the practical
availability of variant of bypass algorithm also works.

A. sensitivity analysis on hyperparameters

The proposed bypass Algorithm 1 is controlled by several
hyperparameters: n, γ(t) and ϵ, which are needed to be tuned
for practical use. In this section, we explain the role of each
hyperparameters with corresponding experimental results with
different choices of them.

1) n : number of opt1 iteration: During opt1 phase, we
desire an optimizer to explore and gain amount of advantages
in extended space D2. Therefore it is natural to expect smaller
iterations for opt1 training will induce less exploration and
fewer advantage gain.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

400 600 800 1000 1200 1400 1600 1800 2000
epochs

1.18

1.20

1.22

1.24

1.26

1.28

1.30

1.32

ca
te

go
ric

al
_c

ro
ss

en
tro

py

baseline
n=550
n=600
n=650
n=800
n=1000
n=1200
train1
opt1 end
opt2 end

(a) loss value L2(ω) for n

0 250 500 750 1000 1250 1500 1750 2000
epochs

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

1.40

ca
te

go
ric

al
_c

ro
ss

en
tro

py

baseline
opt1
0.001*t
0.002*t
0.005*t
0.01*t
0.02*t
0.05*t
0.1*t
opt2 end

(b) loss value L2(ω) for γ(t)

500 600 700 800 900 1000 1100
epochs

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

ca
te

go
ric

al
_c

ro
ss

en
tro

py

baseline
opt1
=1e-06
=2e-06
=5e-06
=1e-05
=5e-05
=1e-04
=2e-04
=5e-04

opt2 end

(c) loss value L2(ω) for ϵ

400 600 800 1000 1200 1400 1600 1800 2000
epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

AD
W

_s
um

baseline
n=550
n=600
n=650
n=800
n=1000
n=1200
train1
opt1 end
opt2 end

(d) ∥ADW∥ for n

400 600 800 1000 1200 1400 1600 1800 2000
epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
AD

W
_s

um

baseline
opt1
0.001*t
0.002*t
0.005*t
0.01*t
0.02*t
0.05*t
0.1*t
opt2 end

(e) ∥ADW∥ for γ(t)

400 500 600 700 800 900 1000 1100
epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

AD
W

_s
um

baseline
opt1
=1e-06
=2e-06
=5e-06
=1e-05
=5e-05
=1e-04
=2e-04
=5e-04

opt2 end

(f) ∥ADW∥ for ϵ

Fig. 6. Experimental results of bypass algorithm in CIFAR10 classification task with different hyperparameters.Fig. 6a,Fig. 6b and Fig. 6c show loss reduction
and Fig. 6d,Fig. 6e,Fig. 6f show the change of ∥ADW∥ during the bypass training. Fig. 6a and Fig. 6d show the result of bypass training when the opt1
iteration changes in epochs. The light-blue shaded area represents train1,dot-dashed line shows when opt1 stopped, and dotted line shows when the opt2
ended. Fig. 6b and Fig. 6e show the results when the gamma(t) differs, and Fig. 6c and Fig. 6f show the results when the ϵ changes. All plot values and
its error bars after θ∗ are the average and the sample standard deviation from 5 repeats.

Compared to results in Section V-B with 300 epochs for
opt1, we iterated same experiments with fixed θ∗ and same
settings but number of iterations. As illustrated in Fig. 6a and
Fig. 6d, the fewer n induces less advantages in loss and smaller
value in ∥ADW∥ growth, as expected. The larger number
of iterations did not give better results since the additional
iterations did not give further loss reduction in opt1 phase.

2) γ(t): The γ(t), weight of ∥ADW∥ in L is designed to
have two roles:

1) Cancel out L2 to arrive at {ω : ω ∈ ∥ADW∥ < ϵ}
2) Control the balance between speed of loss reduction and

coming back to V (ADW).
The first role of γ(t) with limt→∞γ(t) = ∞ is shown

in previous sections that ∥ADW∥ did ϵ-closely converged to
0. Here, we show the second role by showing results with
different choice of γ(t).

The second role gives the trade-off relation between the
stability in loss L2(ω0) and the ∥ADW∥-reducing speed.
More precisely, if γ(t) is chosen to be larger, the opt2
phase training will reduce ∥ADW∥ faster but sacrifice the
advantages gained during opt1 more.

We show this trade-off relation by corresponding experi-
ments. We fix the opt1 trajectory and iterated experiments with
same hyperparameters in Section V-B but γ(t). Fig. 6b and
Fig. 6e show this trade-off relation clearly. If the γ(t) grows
fast, the opt2 reduces ∥ADW∥ with smaller iterations, but

the loss peak of during opt2 appears to be significantly large,
which is even larger than the baseline. This explosion of loss
above the baseline may lead to worse destination compared
to baseline since we cannot guarantee that the train3 would
compensate this consumption of loss advantage.

For the smaller γ(t), the opt2 returns stable loss trajectory
below the baseline curve, but consumes more iterations for
opt2 due to slower reduction of ∥ADW∥.

3) ϵ: At the final stage of the bypass algorithm, the proj
will contract the model into original parameter space D1. This
projection would be function-preserving when ∥ADW∥ = 0
but this condition was relaxed to ∥ADW∥ < ϵ for empirical
setting. Therefore the choice of large ϵ would be harmful
for the function-preserving property and hence related to the
stability of the bypass algorithm, because if the loss explode
in any phase of the bypass algorithm, we cannot expect that
the destination of train3 would be better than the baseline.

The results of corresponding experiments are shown in
Fig. 6c and Fig. 6f. Increase of ϵ shows the reduction of opt2
steps, but significantly violates the proj stability. Later the
train3 resolved this explosion, but this behavior might not
always appear.

B. starting at initialization

The bypass algorithm is designed to escape from vicinity of
θ∗ without restarting, under assumption of vanishing gradient.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

0 250 500 750 1000 1250 1500 1750 2000
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

baseline
bypass
opt1
opt2

(a) train accuracy

0 250 500 750 1000 1250 1500 1750 2000
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

baseline
bypass
opt1
opt2

(b) test accuracy

0 250 500 750 1000 1250 1500 1750 2000
epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

AD
W

_s
um

baseline
bypass
opt1
opt2

(c) ∥ADW∥

Fig. 7. Result of starting at initialization θ0 on CIFAR10 classification task. The gray and purple colored areas represent opt1 and opt2 respectively. The
plot values and error bars are the mean and sample standard deviation from 20 repetitions. All hyperparameters except the epochs of train1 are chosen equal
to the experiments in Section V-B.

But the vanishing gradient assumption is usually not satisfied
especially with SGD, and thus embed will be applied when
the loss is still reducing. However, the bypass algorithm would
work at any starting point of neural network training since
the extension & contraction does not consider the gradient of
the loss function. As an extreme case, we can skip train1
and consider the case of θ0 = θ∗. In this case, the result
of opt1 is expected to be better than the baseline, at least
not worse, since it minimizes same loss function with larger
model which is exactly an extension of baseline model. The
expected behavior of remaining parts of bypass are expected
to be similar to Section V-B.

To show that the bypass algorithm works when θ∗ = θ0,
we fixed θ0 and iterated bypassing 20 times with same
hyperparameters utilized in Section V-B and different random
seeds. Due to randomness on SGD, the destinations of baseline
training were not fixed, but the result of bypass trajectories
was always advantageous compared to the baseline. Fig. 7
shows the advantages gained by bypass algorithm compared
to baseline trajectory with same random seed in accuracy plots,
and change of ∥ADW∥ during the training phase.

Typical amount of advantage is observed during opt1 in
Fig. 7a and Fig. 7b, with growth of ∥ADW∥, as opt1 solves
different minimization problem with expanded neural network.
Continue with opt2, the ∥ADW∥ shrinks to 0 with sacrifice
of advantage with small amount shown in Fig. 7c, followed by
proj which completes graceful reduction of model size back
to original model size prior to embed. We emphasize that the
amount of performance drop in opt2 and proj are observed to
be small and still advantageous compared to the model found
by vanilla training. This small gap induces an special benefit
of bypassing that the resulting model have similar performance
with extended model, which is smaller in model size.

The results with θ∗ = θ0 also show in Fig. 7a and Fig. 7b
that the bypass algorithm is advantageous when we restart the
training, when the θ stuck in the stationary point empirically.
If we just apply restarting, the training trajectory would lie in
the blue colored area, which is suboptimal to the destination
of bypassing results.

C. relaxed bypass algorithm with Resnet

We analyze the effect of relaxed bypass algorithm on
Resnet, which is a popular neural network architecture with
residual connections. Since there is no consecutive fully
connected layers in its architecture, the relaxed version of
bypass algorithm is required. In this section, we apply the
Resnet18 model [20] with relaxed bypass algorithm to the
CIFAR10 classification problem and show that the relaxed
bypass algorithm also works for the model with residual
connection, using multiple number of learnable activations.
The Torchvision-implemented version [23] of Resnet18 model
is employed here for the experiment.

1) Experiment Design: We employ Resnet-18 structure and
apply embed on every RELU activations in residual blocks.
The opt2 will minimize sum of loss function L2 and all
∥D∥ of each extended learnable activations. During opt2, each
learnable activations will be projected immediately when ∥D∥
reaches < ϵ.

For the baseline, we train Resnet-18 model up to 1200
epochs by Adam optimizer with cross-entropy loss, batch size
128, constant learning rate 0.0005 and weight decay of 0.1 to
place θ∗ in vicinity of suboptimal stationary point.

After setting θ∗ as a starting point, we apply embed to
the model and start to follow the trajectory generated by the
Bypass algorithm. The opt1 explores D2 for 800 epochs and
the opt2 with ϵ = 0.002 and γ(t) = 3 × 10−6t makes the
model come back to D1. After 60 epochs in opt2, we raise
the growth rate γ(t) to 3× 10−5t.

The results are shown in Fig. 8. Fig. 8a shows the result
similar to Section V. The opt1 gains meaningful advantage
in extended space D2 and opt2 consumes the advantage but
with smaller amount while the baseline trajectory stuck in
suboptimal region of stationary. In advantage plot Fig. 8b
shows that the bypass algorithm gives advantage also in
accuracy, with significant amount. Fig. 8c show that the opt2
can solve the constrained optimization problem even with
multiple extensions.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

1000 1250 1500 1750 2000 2250 2500 2750 3000
epochs

1.5

1.6

1.7

1.8

1.9

2.0

2.1

ca
te

go
ric

al
_c

ro
ss

en
tro

py

baseline
bypass
opt1
opt2

(a) train loss

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
epochs

0.25

0.20

0.15

0.10

0.05

0.00

0.05

ac
cu

ra
cy

train
test
opt1
opt2

(b) Accuracy difference ∆ Acc

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D_
no

rm

baseline
bypass
opt1
opt2

(c) Sum of ∥D∥

Fig. 8. Results on CIFAR10 experiment with Resnet18 model. The gray and purple colored area represents opt1 and opt2 respectively. All plots after epoch
1200 are the results of 5 iterations with different random seed. Fig. 8a shows the categorical cross entropy loss of training process. Fig. 8b plots both the
training and test accuracy advantages per epoch, in which the negative value represents the growth of accuracy. Fig. 8c show the change of sum of ∥D∥ value
during the bypassing.

VII. DISCUSSION

Bypass algorithm, which is our implementation of bypass
pipeline with learnable activation and corresponding comeback
constraint ADW = 0, exhibits many behaviors that are theo-
retically expected. According to the theoretical expectation and
observed in Fig. 5c that the translation of parameter vector

∥ADbW ∥ = ∥proj(ω∗)− ω∗∥. (25)

is not necessarily vanishing, the proj of bypass algorithm
may allow a second escape. Even if ∇ωL2(ω) is empirically
converged, the nonlinear projection proj and non-vanishing
translation may provide the loss-reducing gradient on D1 in
train3.

Practical superiority of bypassing arises from the com-
putational cost that the additional cost compared to vanilla
training is low. Modifications required for bypassing layer
introduces additional O(sW) computation cost in forward and
backward propagation, which is linear to the width sW of the
bypassing layer. Additional cost arises from the computation
of ∥ADW∥ and backpropagation during opt1 and opt2, which
require constant number of additional matrix multiplications
per iteration. Further reduction of additional computation
cost is possible with relaxed bypass algorithm described in
Section IV-A which minimizes ∥D∥ instead of minimizing
∥ADW∥, but at the same time forcing the proj to be trivial,
which may affect performance of subsequent optimization
after proj.

Yet, our Bypass algorithm is not a cure-all, because bypass-
ing via learnable activation may not be always successful due
to diverse structural properties of models φ1 and φ2 and local
loss landscape. To get the most advantage out of bypassing, the
optimization iterations of opt1 must be effective in reducing
the loss, which may not happen depending on the given model
and parameter θ∗. A practical safeguard to contain the risk
from such unwanted scenarios is to test out a few iterations
of opt1 from θ∗ to determine the prospective effect of using
the Bypass algorithm before fully committing.

Both the proj step under comeback constraint and the
embed step in the bypass pipeline can be seen as function-
preserving operators. The function-preserving properties of

operators working on neural network models has been exten-
sively researched in various methods of neural architecture
search (NAS), for instance in growing networks methods
[24]–[27] or network morphism methods [28]–[33]. From
the perspective of NAS, the bypass pipeline as a whole can
be considered as a network morphism explicitly designed to
explore the network architecture space based on the functional
properties of the given model and its parameters.

The main difference between NAS and bypassing comes
from the contraction method, since function preserving op-
erators suggested in NAS only increases the model size (in
number of parameter) but our contraction method suggest to
decrease the model size if the parameter satisfies correspond-
ing algebraic constraints in proposal.

As Bypass algorithm exploits algebraic constraints of the
given parameters to explore the model space, the approach is
distinct from other NAS methods exploiting properties of the
building blocks of the model, such as decomposing a single
convolution into two consecutive convolutions [29] or inserting
additional block of layers which is initialized as identity map
[33]. Hence, the bypass pipeline can be seen as a just-in-time
network architecture search method whose search direction
depends on both the model and its current parameter, with the
explicit goal of escaping local hostilities that can trap most
network training methods used in practice.

The bypass algorithm by learnable activation is applicable
to convolution layer and attention mechanism with mini-
mal modification, due to linearity of convolution and Q,K,V
computation of attention. For those complicated structure of
modern deep neural networks, handling multiple layers is
practically required, and expected to be complicated to analyze
the behavior in first paper proposing bypass pipeline. The near-
future research would be applied on those in-practice modern
neural networks.

Bypass pipeline is very practical, as it is compatible with
not only different optimizers of neural networks but also a
wide range of helping methods, such as warm-up, saddle point
escaping algorithms, or even another bypass pipeline. While
our carefully chosen set of experiments focus on demon-
strating the empirical validity of bypassing, this practical

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

compatibility is another theoretically expected properties of
bypassing. Moreover, we expect even greater empirical success
of bypassing with different combination of techniques and
methods of neural network training.

VIII. CONCLUSION

We present bypassing, a novel extension-contraction-based
concept to mitigate the inevitable slowdown of first-order
optimization methods widely used in neural network training
when they encounter stationary points or their vicinity. We
propose bypass pipeline, a particular formulation of bypassing
based on introducing a specific form of learnable activation
for extension and imposing algebraic constraints required for
contraction. We analyze the theoretical characteristics of the
pipeline, and verify the expected behavior with a Bypass
algorithm, which is our implementation of the bypass pipeline.
In addition to behavior verification, we also demonstrate em-
pirical effectiveness of the Bypass algorithm with benchmark
regression task and classification task. Moreover, we present
various customization on the bypass algorithm with alternative
training scenarios, for practical use. Bypass algorithm shows
promising empirical results and behaviors expected from the-
oretical analysis, which suggests the conceptual validity of
using a bypass pipeline to accelerate gradient-based optimizers
used in neural network training even further.

REFERENCES

[1] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[2] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[4] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize
better: Stability of stochastic gradient descent,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 1225–1234. [Online]. Available:
https://proceedings.mlr.press/v48/hardt16.html

[5] T. M. Breuel, “The effects of hyperparameters on sgd training of neural
networks,” arXiv preprint arXiv:1508.02788, 2015.

[6] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade, 2012.

[7] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” Advances in Neural Information
Processing Systems, vol. 27, pp. 2933–2941, 2014.

[8] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points
— online stochastic gradient for tensor decomposition,” in Proceedings
of The 28th Conference on Learning Theory, ser. Proceedings of
Machine Learning Research, P. Grünwald, E. Hazan, and S. Kale, Eds.,
vol. 40. Paris, France: PMLR, 03–06 Jul 2015, pp. 797–842. [Online].
Available: https://proceedings.mlr.press/v40/Ge15.html

[9] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to
escape saddle points efficiently,” in International conference on machine
learning. PMLR, 2017, pp. 1724–1732.

[10] K. Y. Levy, “The power of normalization: Faster evasion of saddle
points,” arXiv preprint arXiv:1611.04831, 2016.

[11] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan, “On
nonconvex optimization for machine learning: Gradients, stochasticity,
and saddle points,” Journal of the ACM (JACM), vol. 68, no. 2, pp.
1–29, 2021.

[12] C. Yun, S. Sra, and A. Jadbabaie, “Small nonlinearities in activation
functions create bad local minima in neural networks,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=rke YiRct7

[13] T. Ding, D. Li, and R. Sun, “Sub-optimal local minima exist for almost
all over-parameterized neural networks,” ArXiv, vol. abs/1911.01413,
2019.

[14] S. Arora, N. Cohen, N. Golowich, and W. Hu, “A convergence analysis
of gradient descent for deep linear neural networks,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=SkMQg3C5K7

[15] Y. Zhou and Y. Liang, “Critical points of linear neural networks:
Analytical forms and landscape properties,” in Proc. Sixth International
Conference on Learning Representations (ICLR), 2018.

[16] C. Yun, S. Sra, and A. Jadbabaie, “Global optimality conditions
for deep neural networks,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=BJk7Gf-CZ

[17] K. Kawaguchi, “Deep learning without poor local minima,” in Advances
in Neural Information Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran
Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.
cc/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf

[18] B. D. Haeffele and R. Vidal, “Global optimality in neural network
training,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 7331–7339.

[19] P. Cheridito, A. Jentzen, and F. Rossmannek, “Landscape analysis for
shallow neural networks: complete classification of critical points for
affine target functions,” Journal of Nonlinear Science, vol. 32, no. 5,
p. 64, 2022.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[22] F. Schneider, L. Balles, and P. Hennig, “Deepobs: A deep learning
optimizer benchmark suite,” in 7th International Conference on
Learning Representations (ICLR), May 2019. [Online]. Available:
https://openreview.net/pdf?id=rJg6ssC5Y7

[23] T. maintainers and contributors, “Torchvision: Pytorch’s computer vision
library,” https://github.com/pytorch/vision, 2016.

[24] X. Yuan, P. H. P. Savarese, and M. Maire, “Growing efficient deep
networks by structured continuous sparsification,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=wb3wxCObbRT

[25] Q. Chen and W. Hao, “A homotopy training algorithm for fully con-
nected neural networks,” Proceedings of the Royal Society A, vol. 475,
no. 2231, p. 20190662, 2019.

[26] U. Evci, B. van Merrienboer, T. Unterthiner, F. Pedregosa,
and M. Vladymyrov, “Gradmax: Growing neural networks
using gradient information,” in International Conference on
Learning Representations, 2022. [Online]. Available: https:
//openreview.net/forum?id=qjN4h wwUO

[27] G. Wang, X. Xie, J. Lai, and J. Zhuo, “Deep growing learning,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2812–2820.

[28] T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” arXiv preprint arXiv:1511.05641, 2015.

[29] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” in
International conference on machine learning. PMLR, 2016, pp. 564–
572.

[30] T. Wei, C. Wang, and C. W. Chen, “Stable network morphism,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–8.

[31] ——, “Modularized morphing of deep convolutional neural networks:
A graph approach,” IEEE Transactions on Computers, vol. 70, no. 2,
pp. 305–315, 2021.

[32] J. Lu, W. Ma, and B. Faltings, “Compnet: Neural networks growing
via the compact network morphism,” arXiv preprint arXiv:1804.10316,
2018.

[33] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ByME42AqK7

http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v48/hardt16.html
https://proceedings.mlr.press/v40/Ge15.html
https://openreview.net/forum?id=rke_YiRct7
https://openreview.net/forum?id=SkMQg3C5K7
https://openreview.net/forum?id=BJk7Gf-CZ
https://openreview.net/forum?id=BJk7Gf-CZ
https://proceedings.neurips.cc/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://openreview.net/pdf?id=rJg6ssC5Y7
https://github.com/pytorch/vision
https://openreview.net/forum?id=wb3wxCObbRT
https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=ByME42AqK7

	Introduction
	Theoretical Aspects of Bypassing
	Intuition of Bypassing
	Bypass pipeline

	Bypass pipeline for neural networks
	Model extension and embedding
	Comeback constraint and proj
	Constrained optimization train2

	Bypassing algorithm
	relaxed bypass algorithm

	Experiments I: Bypassing behaviors
	Regression: Eggholder with Gradient Descent
	Experiment Design
	Results and Interpretation

	Classification: CIFAR10 with Minibatch SGD
	Experiment Design
	Results in Model Performance
	Results in Bypassing Behavior

	Experiments II: Bypass algorithm in practice
	sensitivity analysis on hyperparameters
	n : number of opt1 iteration
	(t)
	

	starting at initialization
	relaxed bypass algorithm with Resnet
	Experiment Design

	Discussion
	Conclusion
	References

