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Bias-Corrected Q-Learning With
Multistate Extension

Donghun Lee and Warren B. Powell , Member, IEEE

Abstract—Q-learning is a sample-based model-free algo-
rithm that solves Markov decision problems asymptotically,
but in finite time, it can perform poorly when random re-
wards and transitions result in large variance of value esti-
mates. We pinpoint its cause to be the estimation bias due to
the maximum operator in Q-learning algorithm, and present
the evidence of max-operator bias in its Q value estimates.
We then present an asymptotically optimal bias-correction
strategy and construct an extension to bias-corrected Q-
learning algorithm to multistate Markov decision processes,
with asymptotic convergence properties as strong as those
from Q-learning. We report the empirical performance of the
bias-corrected Q-learning algorithm with multistate exten-
sion in two model problems: A multiarmed bandit version
of Roulette and an electricity storage control simulation.
The bias-corrected Q-learning algorithm with multistate ex-
tension is shown to control max-operator bias effectively,
where the bias-resistance can be tuned predictably by ad-
justing a correction parameter.

Index Terms—Bias correction, electricity storage,
Q-learning, smart grid.

I. INTRODUCTION

RANDOMNESS arises in a number of stochastic optimiza-
tion problems, such as stochastic shortest path problems,

asset valuation problems, energy storage problems, and equip-
ment repair problems. Randomness in the rewards can introduce
a high level of uncertainty in estimates of the value of being in
a state, which can complicate online learning algorithms as
well as Monte Carlo based offline learning algorithms, which
use sampled estimates of value functions. Randomness in the
state transition can introduce another dimension of uncertainty
in the value estimation in which state space is used as one of
the estimation parameters. In this paper, we identify serious
problems that this behavior introduces into practical implemen-
tations of Q-learning, a reinforcement learning algorithm that is
frequently chosen as a go-to method for solving online, model-
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free stochastic control problems due to its desirable theoretical
guarantees.

Q-learning, first proposed in [1], is a model-free approximate
algorithm that asymptotically produces a Bellman optimal so-
lution and solves Markov decision process (MDP) problems as
dynamic programming problems without explicit knowledge of
the distribution of the uncertainty. Functionally, the algorithm
can be seen as a blend of exact value iteration and stochastic
approximation as follows:

Q̂n ← Ĉ (sn , an ) + γ max
a ′∈A(sn+1 )

(
Q̄n−1 (

sn+1 , a′
))

(1)

Q̄n (sn , an )← (1− α (sn , an )) Q̄n−1 (sn , an )

+ α (sn , an ) Q̂n (2)

where (sn , an ) is a determined state-action pair, and sn+1 is a
realization of random state transition due to taking action an

in state sn (we defer the detailed definition of other terms).
Also, when the Q̄n estimate is represented in tabular format,
Q-learning enjoys asymptotic convergence properties with a
mild set of technical assumptions as demonstrated in [2]–[4].
The assumptions in [2] allow many stochastic models for Ĉ
and sn+1 given sn , an that can be applied to Q-learning with
its convergence guarantee. Moreover, the asymptotic rate of
convergence of Q-learning has been studied theoretically by a
number of authors including [5]–[7]. Thanks to its generally
applicable set of assumptions and robust theoretical properties,
Q-learning has been applied to a wide range of dynamic pro-
gramming problems, including soccer-playing robot control [8],
[9], human-computer dialogue strategy [10], pricing in agent-
based economy [11], mobile robot navigation [12], computer
game AI development [13], agent-based production scheduling
[14], signal transmission system control [15].

However, when the Q-value estimator Q̄n contains large
stochastic noise, which may be due to a noisy contribution
function or a highly stochastic transition function, Q-learning
may suffer from finite-time bias as noted in [16] and [17].
This bias may cause Q-learning to generate its value estimate
V̄ n

Q (s) := maxa Q̄n (s, a) that significantly overestimates the
true Bellman-optimal value V ∗ (s). This overestimation can
linger even after millions of sample observations, in applica-
tions where randomness in the contribution function or the tran-
sition function is sufficiently large. Consequently, Q-learning
may show very slow real-world convergence of V̄ n

Q to V ∗ (s),
which may misguide many practitioners to prematurely de-
clare the convergence of Q-learning. Later, during an attempt to
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extract insights to the underlying problem from the “converged”
Q-learning algorithm, practitioners may find out that their value
estimates are wildly missing the theoretical optimal. The un-
derlying cause of this phenomenon is the bias due to the max
operator inherent in Q-learning as shown in (1).

Our work is motivated by two different problem settings:
The betting strategy in the game of Roulette, and the charge-
discharge control algorithm of an electricity storage attached
to a smart grid. The two problems share the characteristic of
uncertainty in problem structure, although the source of uncer-
tainty of the two problems is quite distinct. We also note that
both have discount factors very close to 1. This creates a setting
where the max-operator bias becomes severe. Yet, the purpose
of applying algorithms like Q-learning is not only to find out
the optimal control policy that obtains Bellman optimality, but
also to find out the correct time-discounted value of running the
control policy, since that value estimate is the estimate of actual
fiscal value of the equivalent real-world item that enables the
policy. These are the situations where overestimating the value
will lead to unwise decisions.

In this paper, we present a significant extension of discus-
sion on max-operator bias shown in [18], through characteriz-
ing the max-operator bias into two types by the fundamental
sources of the bias in value estimates of Q-learning. We also
construct additive correction term that addresses both sources
of max-operator bias, and use it to present bias-corrected Q-
learning with multistate extension (BCQ-MS). Also, the bias-
correction term originally reported in [19] is modified for ro-
bustness in the form of bias-corrected Q-learning we present in
this paper. We prove the asymptotic unbiasedness of the bias
correction and the asymptotic convergence of the BCQ-MS al-
gorithm. We present the effect of bias correction by compar-
ing the value estimates of classical Q-learning and those of
BCQ-MS.

The rest of the paper is organized as follows. First, Section II
characterizes the max-operator bias in Q-learning. Section III
derives the bias correction factor for a single-state MDP (SS-
MDP), with which we also construct a more robust version
of the bias-corrected Q-learning algorithm for SS-MDP and
demonstrate the |A|-asymptotic unbiasedness of this correction.
Section IV is where we present the bias-corrected Q-learning
(BCQ) algorithm with multistate extension and its asymptotic
convergence to Bellman optimal value function. We provide em-
pirical evidence of bias-corrected Q-learning and its multistate
extension showing effective mitigation of the max-operator bias
found in Q-learning applied to the roulette benchmark problem
in Section V and to the battery control benchmark problem in
Section VI.

II. CHARACTERIZATION OF MAX-OPERATOR BIAS IN

Q-LEARNING

We first show an example of max-operator bias in Q-learning.
We define the terms to provide an intuitive glimpse of the source
of max-operator bias in Q-learning, and then construct an oracle
Q-learning process. Using the oracle process, we define the max-
operator bias and characterize its existence condition.

A. Structural Consequence of Q-learning: Max-Operator
Bias

Q-learning is an iterative algorithm that solves an MDP de-
fined by the 5-tuple (S,A, C, T, γ), where S is the state space,
A is the action space, C : S ×A �→ R is the contribution func-
tion, T : S ×A �→ S is the transition function, and γ ∈ [0, 1)
is the discount factor.

Running a Q-learning algorithm or a variant that fol-
lows the key update equations (1) and (2), under an
MDP defined by the 5-tuple (S,A, C, T, γ), will generate
{(sn , an , Ĉn+1 , T̂ n+1)}n=0,1,···, a sequence of state, action, ob-
served contribution, and observed transition.

Using the iteration counter n to denote time, we index the
current state as sn , the action as an , the observed contribu-
tion as Ĉn+1 ∼ C (sn , an ), and the observed transition to the
next state (sn+1) as T̂ n ∼ T (sn , an ). We also denote a prob-
ability space (Ω,F, P ) where all possible trajectories that the
Q-learning algorithm can take are in Ω, and the filtration F
is the limiting σ-algebra of the filtration F0 ⊆ F1 ⊆ F2 ⊆ · · ·
on Ω indexed by n = 0, 1, 2, . . .. Each filtration Fn is a σ-
algebra generated by an increasing sequence of random vari-
ables (s0 , a0 , Ĉ1 , T̂ 1 , . . . , Ĉn , T̂ n ).

With an appropriately chosen stepsize rule α (s, a) and an
exploration policy that allows sufficient coverage of (s, a) ∈
S ×A, Q-learning generates output Q̄n that, as n→∞, asymp-
totically approaches the solution Q̄∗ that satisfies Bellman opti-
mality as

Q̄∗ (s, a) = C (s, a) + γ max
a ′∈A

{
Q̄∗ (T (s, a) , a′)

}
(3)

for all (s, a) ∈ S ×A. This asymptotic convergence still holds
even when C (s, a) and T (s, a) are random variables. The op-
timality condition holds in conditional expectations as follows:

Q̄∗(s, a) = E[C(s, a)|s, a]

+ E

[
γ max

a ′∈A

{
Q̄∗ (T (s, a) , a′)

}
∣
∣
∣
∣s, a

]
(4)

where the conditioning event s, a is a shorthand such that
E[·|s, a] := E[·|S = s,A = a], in which S,A are random vari-
ables that take values in S,A, respectively.

problems may generate output Q̄n with a significant devia-
tion from the asymptotic optimal value Q̄∗. We name the cause
of this phenomenon in Q-learning as “max-operator bias,” as
the max operator in Q-learning algorithm plays a central role in
manifesting the deviation in Q̄n . We first provide an intuitive ex-
planation on how max operator is involved in this. As Q-learning
estimate Q̄n is a stochastic approximation of Bellman optimal
value Q̄∗, its deviation originates from the deviations in sample
realizations Ĉ and T̂ . The deviation, when positive, can be pre-
served and propagated by the update formula used by Q-learning
as outlined below. Let us assume such positive deviation hap-
pened at iteration m, where Ĉm+1 > EC (sm , am ), and T̂ m+1

was chosen by chance such that γ maxa ′ Q̄
m−1

(
sm+1 , a′

)
was

sufficiently large to have positive bias in Q̂m . This bias is trans-
ferred to Q̄m as shown in (2), and let us assume that this bias
is largest such that Q̄m (sm , am ) = maxa ′ Q̄

m (sm , a′). Then,
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later at iteration n > m where T̂ n+1 := T (sn , an ) happened
to be sn+1 = sm , the positive bias in Q̄m is now propagated
to Q̄n due to the formula in (1). A similar procedure can be
repeated with different stochastic deviations that depend on the
variance of C and T . As explained above, the max operator
found in Q-learning update rule in (1) is the key operator that
asymmetrically preserves only positive deviations and allows
their propagation.

Before analyzing the deviation of Q̂n and bias in Q̄n in
any finite iteration n, we introduce a conditional expectation
shorthand En [·]. We use this as the conditional expectation
with respect to sigma-algebra Fn , which means taking the
expectation conditioned on all information available at itera-
tion n, including all the observed random variables indexed
by up to n. In the context of Q-learning applied to an MDP,
we note that the observed transition T̂ n is sn , because this
transition is caused by taking action an−1 from state sn−1 in
the given MDP. Therefore, the shorthand En can be explicitly
interpreted as

En [·] := E[·|Fn ]

= E[·|s0 , a0 , Ĉ1 , . . . , sn−1 , an−1 , Ĉn , T̂ n ]

= E[·|s0 , a0 , Ĉ1 , . . . , sn−1 , an−1 , Ĉn , sn ]

= E[·|s0 , a0 , Ĉ1 , . . . , sn−1 , an−1 , Ĉn , sn , an ]. (5)

Note that we can arbitrarily include an among the conditioned
variables, since an is a Fn -measurable random variable. In a
similar manner, we shorthand the conditional variance with re-
spect to Fn as Varn [·].

Now we are ready to define the bias materialized by max
operator from stochastic sample deviations in C and T .

Definition 1 (Max-operator bias in Q-learning): The max-
operator bias of Q-learning sample Q̂n , at iteration counter n is
defined as

Bn := Q̂n − E[Q̂n |Fn−1 ]. (6)

This is the actual bias observed at iteration n, when the sam-
ple Q̂n is observed. Under certain conditions, this bias will
accumulate significantly in Q-learning output Q̄n (s, a), which
may lead to an unreasonably large estimate of the value function
V̄ n (s) := maxa∈A(s) Q̄n (s, a).

At the first glance, the max operator in (1) is the source of
nonnegative bias to Q̂n as noted in [16] and [17], for the max-
imum of the random variables Q̄n−1 is on average no less than
the average of Q̄n−1 itself. This max-operator bias is propagated
through the value estimates Q̄n by stochastic approximation step
in (2). The max-operator bias is inherent in the Q-learning al-
gorithm, but it can be damped out, for example, as the discount
factor γ approaches 0.

Fig. 1. Showcase of overestimated value functions from Q-learning.
Each figure has ten lines corresponding each sample runs. Each line
shows the evolution of Q value Q̄n versus n. The first figure is showing
the first 1% of the iterations (up to 100 K steps) that are shown in the
second figure (which shows up to 1 M steps). The correct value estimate
is 0.

B. Empirical Evidence

We provide empirical evidence of the overestimation of the
value function caused by the accumulation of max-operator bias
in Q-learning. The experimental setting is a simplified American
roulette, where the action set is comprised of betting $1 at one
of 38 numbers, plus not participating in the bet. It is well known
that the act of participating in this particular gamble has negative
average expected return. We know that the best action in front
of a perfect roulette table is to not participate, and the optimal
value function is, therefore, 0.

The roulette MDP is set up as a single-state, 39-action,
γ = 0.99 infinite-horizon discounted MDP with a reward func-
tion of 35 upon correct bet, −1 on wrong bet, and 0 on not
placing any bet. We used pure exploration policy in choosing
action an instead of greedy policy in which the past experience
affects the distribution of upcoming actions, since our goal is to
demonstrate the significance of max-operator bias in Q-learning
even under most conservative exploration policy. We repeat the
algorithm with ten different random seeds.

As shown in Fig. 1, there is a consistent overestimation of
the estimated value function from Q-learning (y axis) of the
true value function (constant 0). The overestimation may be
easily mistaken as indicating convergence since the estimates
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self-correct only very slowly after the initial transient phase. Yet,
even after observing 10 00 000 roulette rolls, the value estimates
from Q-learning are still far from the true value 0, as shown in
the second subfigure. Any premature declaration of convergence
may result in a misleading policy such that according to the
policy, playing the game is expected to produce positive rewards.
The problem of max-operator bias in Q-learning value estimate
Q̄n is real and can persist for many iterations.

C. Oracle Q-learning Process and its Properties

We introduce the oracle Q-learning process as a tool to fa-
cilitate analysis of the max-operator bias in Q-learning. Oracle
Q-learning is the dream of ordinary Q-learning, in the sense that
oracle Q-learning knows the contribution function C and the
transition function T . The iterative update formula of Oracle
Q-learning is, therefore, very similar to that of Q-learning, but
with the ability to calculate the conditional expectation. We use
superscript ∗ to denote oracle Q-learning analogs as follows.

Definition 2 (Oracle Q Sample and Estimate): At iteration
n of Q-learning, the oracle Q sample Q̂∗,n is defined as
follows:

Q̂∗,n ← E[Ĉ(sn , an )|Fn−1 ]

+ γE

[
max

a ′∈A(S n + 1 )
Q̄n−1 (

Sn+1 , a′
)
∣
∣
∣
∣F

n−1
]

(7)

and the oracle Q estimates Q̄∗,n are updated as follows:

Q̄∗,n (sn , an )← (1− α (sn , an )) Q̄n−1 (sn , an )

+ α (sn , an ) Q̂∗,n . (8)

The access to the oracle allows the exact computation of the
expectations over Ĉ and Sn+1 = T̂ n in (7). The oracle Q sample
Q̂∗,n is in fact the unbiased sample with zero max-operator
bias. It is straightforward to show this by substituting Q̂n with
Q̂∗,n in Definition 1. With oracle Q sample, we can interpret
intuitively the max-operator bias as the difference between Q-
learning sample Q̂n and the oracle Q sample Q̂∗,n , as Bn :=
Q̂n − E[Q̂n |Fn−1 ] = Q̂n − Q̂∗,n .

With the definitions and an intuitive understanding of the
max-operator bias, we are ready to present the characteristics of
max-operator bias in Q-learning.

D. Characterization and Existence of Max-Operator Bias
in Q-learning

The max-bias term can be classified into two different por-
tions. From its definition, we rearrange the terms as follows:

Bn := Q̂n − E[Q̂n |Fn−1 ] (9)

= Ĉ(sn , an ) + γ max
a ′∈A(sn + 1 )

Q̄n−1 (
sn+1 , a′

)

− (E[Ĉ(sn , an )|Fn−1 ]

+ γE

[
max

a ′∈A(T n )
Q̄n−1

(
T̂ n , a′

) ∣
∣
∣
∣F

n−1
])

(10)

= Bn
C + Bn

T (11)

to isolate the two bias terms Bn
C and Bn

T . It is clear that there are
two different sources of max-operator bias in Q-learning: One
from the stochasticity of Ĉ, the other from the stochasticity of
T̂ . For clarity’s sake, the expressions of the two terms are shown
as follows:

Bn
C := Ĉ (sn , an )− En−1

[
Ĉ (sn , an )

]
(12)

Bn
T := γ

(
max

a ′∈A(sn+1 )
Q̄n−1 (

sn+1 , a′
)

−En−1

[

max
a ′∈A(T̂ n )

Q̄n−1
(
T̂ n , a′

)
])

. (13)

Trivially, the bias due to stochasticity of Ĉ (sn , an ) disappears
when Varn−1Ĉ (sn , an ) = 0, and the bias due to stochasticity
of T̂ n disappears when either γ = 0 or |S| = 1. However, unless
both the conditions are met, Bn does not disappear in Q-learning
even as n→∞. Instead, there is always a significant probability
of Bn > 0, which translates to the upward bias introduced into
Q̄n . This upward bias contributes to the upward bias in Q̂m , the
sample in the future iteration m in which the Q-learning revisits
the state-action pair (sn , an ), because such positive bias Bn is
reflected on Q̄n and propagated to later Q-samples Q̂m where
m > n and (sm , am ) = (sn , an ). We show that there is nonzero
probability of Bn > 0 for all n.

Lemma 3: Given a Q-learning instance solving an MDP with
at least one of Ĉn and γ maxa ′ Q̄

n−1(T̂ n , a′) is a random vari-
able, and the variables Ĉn and T̂ n are independent conditional
on (sn , an ), max-bias exists in Q̂n , such that for all n

P [Bn > 0|Fn−1 ] > 0. (14)

Proof: We define Ŷ n := γ maxa ′ Q̄
n−1(T̂ n , a′). The condi-

tional independence of Ĉn := C (sn , an ) and T̂ n = T (sn , an )
given (sn , an ) is true according to the definition of MDP, and
this implies Ĉn and Ŷ n are independent.

First, we consider the case of both Ĉn and Ŷ n are random
variables. When Ĉn and Ŷ n are random variables, Q̂n = Ĉn +
Ŷ n is a sum of two independent random variable with a pdf
equal to the convolution of the pdf of Ĉn and Ŷ n . Otherwise,
when only one of the Ĉn and Ŷ n is a random variable, then the
pdf of Q̂n is a pdf of the underlying random variable, shifted
by the value of the other deterministic variable. Therefore Q̂n is
another random variable given (sn , an ), so P [Bn > 0|Fn−1 ] =
P [Q̂n − En−1 [Q̂n ] > 0|Fn−1 ] > 0. �

As shown, at any iteration while a Q-learning algorithm is
running, it is possible to have positive max-operator bias in a
Q-learning sample Q̂n in a generic MDP problem with very
mild assumptions. Once the bias happens, it will influence Q
estimate Q̄n by the update rule in (2), and may have more effect
in later iterations. This applies to ideal situations even when the
Q estimate is exactly the true value as Q̄n = Q̄∗.

The characterization of max-operator bias in Q-learning im-
plies an immediate corollary for the sufficient condition when
the max-operator bias cannot exist in Q-learning.
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Corollary 4 (Condition for zero max-operator bias): The
max-operator bias does not exist when the following conditions
are both true.

1) Varn−1Ĉn = 0 for all (s, a) ∈ S ×A .
2) γ = 0 or |S| = 1 .
Proof: The first condition removes the Bn

C term of the bias,
by removing the randomness of Ĉ (sn , an ). The second condi-
tion removes the Bn

T term of the bias, by removing the random-
ness of γ maxa ′ Q̄

n−1(T̂ n , a′). �
We wish to create a simple problem class, which still exhibits

max-operator bias. The goal is to use this simple stylized MDP
problem to derive the bias term analytically and use it as the
basis of a bias correction term. Roulette is a nice example of
this class of problem, which we call the SS-MDP.

Definition 5 (SS-MDP): An SS-MDP in this paper is
an MDP-tuple (S,A, C, T, γ) such that |S| = 1, |A| > 1,
∀(s, a) ∈ S ×A : VarC(s, a) > 0, and γ �= 0.

III. BIAS-CORRECTION FOR SS-MDP

We introduce the desired property of an ideal max-operator
bias correction term for Q-learning in SS-MDP. Then we present
the bias correction term B̃n−1

C for SS-MDP and its incorporation
into Q-learning algorithm as BCQ for SS-MDP. Then we show
the structural property of BCQ for SS-MDP that the term B̄n−1

C

reaches asymptotically unbiased correction as |A| → ∞.

A. Bias Correction Term

We first present the desired property of a max-operator bias
correction term.

Proposition 6 (Unbiasedness Condition for Max-operator
Bias Correction): Let Q̂n be Q-sample value from observing
random variables in Q-learning iteration n <∞. A bias
correction term B̄n−1 is unbiased when the expectation of
bias-corrected sample Q̂n − B̄n−1 satisfies

E[Q̂n − B̄n−1 |Fn−1 ]− Q̂∗,n = 0 (15)

where Q̂∗,n denotes oracle Q-sample defined as

Q̂∗,n := E[Ĉ
(
sn−1 , an−1) |Fn−1 ]

+ γE

[

max
a∈A(T̂ n )

Q̄n−1
(
T̂

(
sn−1 , an−1)

) ∣
∣
∣
∣F

n−1

]

.

(16)

By definition, oracle Q-sample is bias free, as it uses not the
sample realization, but the expectation of the random variables.
However, we do not assume access to Oracle Q sample to reach
the desired property of Proposition 6. For SS-MDP, we present
a Fn -measurable function B̃n

C as a bias correction term, as Bn
C

is the only source of bias and Bn
T = 0 in SS-MDP.

Definition 7: A bias correction term B̃n
C is defined as

B̃n
C (sn , an ) =

(
ξ

b|A(sn )|
+ b|A(sn )|

)
σ(sn , an ) (17)

Algorithm 1: BCQ for SS-MDP.

Require: Q̄0 (s, a), s0 , γ, access to MDP (S,A, C, T ), N ,
stepsize rule αn

1: for n = 0, 1, . . . , N − 1 do
2: Decide an

3: Observe Ĉn+1 ∼ C(sn , an )
4: Observe sn+1 = T̂ n+1 ∼ T (sn , an )
5: if B̃n+1

C is computable then

6: Compute B̃n+1
C ←

(
ξ

b |A( s n ) |
+ b|A(sn )|

)
σ̄n+1

(sn , an )
7: Compute Q̂n+1

BC ← C̄n+1(sn , an ) + γ

maxa∈A(sn + 1 ) Q̄n
(
sn+1 , a

)
− B̃n+1

C

8: Update Q̄n+1 (sn , an )← (1− αn (sn , an )) Q̄n

(sn , an ) + αn (sn , an ) Q̂n+1
BC

9: end if
10: end for
11: return Q̄N (s, a)

where ξ is Euler–Mascheroni constant and bM is defined for
m > 0 as

bM := (2 log(M + 7)− log log(M + 7)− log 4π)
1
2 (18)

and σ(s, a) :=
√

Var [C(s, a)].
In problems where the variance of C(s, a) is not known,

σ(s, a) is replaced by the square root of sample variance esti-
mator of C(s, a) that is computed with samples Ĉi observed for
i < n.

B. Bias-Corrected Q-Learning Algorithm

The BCQ algorithm is shown in Algorithm 1, where we apply
the concept of bias correction for SS-MDP to a conventional Q-
learning algorithm. The key property of NCQ algorithm is the
bias correction term B̃n

C which is incorporated into computing
the Q̂n

BC .
Note that the condition for “B̃n

C is computable,” as mentioned
in Algorithm 1, is a gatekeeper to remind that the algorithm
needs at least two samples of Ĉ (s, a) to compute B̃n

C (s, a)
when the variance of C(s, a) is not known. We denote the
square root of sample variance estimator as σ̄n (s, a) in line 6 of
Algorithm 1. C̄n (s, a), used in line 7 of Algorithm 1 is the
sample mean of C(s, a) using information up to iteration n,
computed as

C̄n (s, a) :=
1

|N n (s, a)|
∑

i∈N n (s,a)

Ĉ
(
si, ai

)
(19)

where N n (s, a) contains all time index 0 ≤ i < n where
(s, a) state-action pair was taken at index i. When there are not
enough samples of Ĉ, the algorithm defers updating the Q̄ val-
ues. It is possible to use a more conservative condition by waiting
for more than two samples for more stable estimates, especially
when the uncertainty of C is too large to have a reasonable esti-
mate with just two samples. This burn-in sample size is a tunable
parameter, increasing which will make the correction term less
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susceptible to deviations at the cost of delaying the onset of
the learning. We use the minimum burn-in size of two samples
throughout the experimental results presented in this paper.

Similar to Q-learning, it is important to select actions an

to visit each state-action pair (s, a) ∈ S ×A infinitely often
as n→∞ to ensure the limit value of Q̄n to satisfy Bellman
optimality.

C. Mathematical Preliminaries

We first prove several lemmas regarding bM , the expression
found in the correction term for Bn

C , and then other lemmas re-
garding asymptotic convergence in distribution of the maximum
of normally distributed random variables to Gumbel random
variables using bM as a transformation formula. The lemmas
introduced here are used to show the asymptotic unbiasedness
property of the max-operator bias correction term B̃n−1

C in the
BCQ algorithm for SS-MDP.

Lemma 8: ∀u ∈ [x,∞), u2

2b2
M

M→∞−−−−→ 0 where bM is defined
as in (18).

Proof: Substituting in the definition of bM gives

lim
M→∞

u2

2b2
M

= lim
M→∞

u2

O(log(M + 7))
= 0.

�
Lemma 9: 1

2 b2
M + log bM − log M + 1

2 log 2π M→∞−−−−→ 0.
Proof: Substituting the definition of bM (18) for b2

M part
gives

1
2
b2
M + log bM − log M +

1
2

log 2π

=
1
2

(2 log(M + 7)− log log(M + 7)− log 4π)

+ log bM − log M +
1
2

log 2π

= log
(

M + 7
M

)
+ log

(
bM√

2 log M

)
M→∞−−−−→ 0 + 0 = 0.

The last line mentioned above holds because log is a monotone

function and bM√
2 log M

M→∞−−−−→ 1 (l’Hôpital’s rule). �
Lemma 10: Given a normal c.d.f. Φ(x)

− log Φ
(

x
bM

+ bM

)

1− Φ
(

x
bM

+ bM

) M→∞−−−−→ 1.

Proof: Apply l’Hôpital’s rule to obtain

lim
M→∞

− log Φ
(

x
bM

+ bM

)

1− Φ
(

x
bM

+ bM

) = lim
M→∞

− 1
Φ

(
x

b M
+bM

)

−1
= 1.

The required conditions to apply l’Hôpital’s rule are checked as
follows.

1) limM→∞
(
− log Φ

(
x

bM
+ bM

))
= 0.

2) limM→∞
(
1− Φ

(
x

bM
+ bM

))
= 0.

3) Both functions are differentiable over the domain of M .
�

Lemma 11: Given an independent and identically distributed
normal sample X̂1 , X̂2 , . . . X̂M

bM ·
(

max
i

{
X̂i − EX̂i√

VarX̂i

∣
∣
∣
∣i ∈ {1, 2, . . . ,M}

}

− bM

)

d−−−−→
M→∞

G (0, 1)

whereG (0, 1) is a standard Gumbel distribution which has mean
ξ ≈ 0.5774 (the Euler–Mascheroni constant) and variance π 2

6 .
Proof: To show the convergence in distribution, we show the

c.d.f. of the maximum of M standard normal random variables
converges to the c.d.f. of Gumbel distribution. First, we use
Φ, the c.d.f. of a single standard normal, to rewrite the c.d.f.
of the maximum of M standard normal random variables as
follows:

Pr [max (X1 , . . . , XM ) ≤ x]

= Pr [{X1 ≤ x} ∩ {X2 ≤ x} ∩ · · · ∩ {XM ≤ x}]

=
M∏

i=1

Pr [Xi ≤ x]

= (Φ (x))M .

Since X̂1 , X̂2 , . . . X̂M are normally distributed, X̂ i−EX̂ i√
VarX̂ i

fol-

lows the standard normal distribution. So we prove the lemma
by showing that

(
Φ

(
x

bM
+ bM

))M
M→∞−−−−→ e−e−x

=: G(x) (20)

since the LHS is equivalent to Pr [max {Xi} ≤ x] where Xi’s
are i.i.d. standard normal samples, and RHS is the c.d.f. of the
standard Gumbel distribution.

The relation in (20) is equivalently stated as

lim
M→∞

(
Φ

(
x

bM
+ bM

))M

= G (x)

lim
M→∞

M log
(

Φ
(

x

bM
+ bM

))
= log G (x) .

Then it can be further transformed using Lemma 10

lim
M→∞

M

(
−

(
1− Φ

(
x

bM
+ bM

)))
= log G (x)

lim
M→∞

M

(
1− Φ

(
x

bM
+ bM

))
= − log G (x) . (21)
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Taking only the portion inside lim in the LHS of (21), we
proceed as

M

(
1− Φ

(
x

bM
+ bM

))

=
M

bM

√
2π

∫ ∞

x

exp
(
−1
2

(
u2

b2
M

+ 2u + b2
M

))
du

= exp
(
−

(
1
2
b2
M + log bM − log M +

1
2

log 2π
))

∫ ∞

x

exp
(
− u2

2b2
M

)
exp (−u) du

M→∞−−−−→ 1
∫ ∞

x

1 exp (−u) du (22)

= e−x (23)

where (22) is true by Lemmas 8 and 9.
Since the c.d.f. of the standard Gumbel distribution is

G(x) := e−e−x
, so is− log G(x) = e−x . Therefore, (23) proves

(21), proves (20) and the lemma. �

D. Asymptotically Unbiased Correction for SS-MDP

Here we show that the bias correction term in Definition 7
asymptotically converges to the unbiased correction term as
|A| → ∞ in SS-MDP. We also assume that contribution has a
finite bound |C| < CM <∞.

Theorem 12: Given n is large enough to assume C̄n
a for a ∈

A are i.i.d. normally distributed, the bias correction term B̃n
C

converges to an unbiased correction term B̄∗,n as |A| → ∞ in
SS-MDP.

Proof: For bias-corrected Q-sample Q̂n
BC that includes the

correction term B̃n
C to be unbiased asymptotically, it must satisfy

the unbiasedness condition (as in Definition 6) asymptotically
as follows:

E[Q̂n
BC |Fn−1 ]− Q̂∗,n

|A|→∞−−−−→ 0 (24)

where Q̂n
BC is computed as shown in line 7 of Algorithm 1. We

show the |A|-asymptotic unbiasedness of bias correction term
B̃n

C by showing (24) in SS-MDP. As |S| = 1 for SS-MDP, for
brevity we omit s when it is used as an argument, for example
using (a) instead of (s, a).

We assume at iteration n, a greedy action an is cho-
sen such that an = arg maxa∈A C̄n (a). For succinctness,
we use the following shorthand notations: The sample es-
timate C̄n

a := C̄n (a), and Q̄n
M := maxa∈A Q̄n (a). We de-

fine a∗,n := arg maxa∈A En−1Q̂n (a) as the optimal greedy
action that maximizes the expectation of Q̂n conditional
to Fn−1 . This notation allows us to rewrite Q̂∗,n =
EC̄a∗, n + γQ̄n−1

M . Substituting Q̂∗,n into the LHS of (24)
gives

E

[
Q̂n

BC − B̃n
C

∣
∣
∣
∣F

n−1
]
− Q̂∗,n

= En−1
[
max
a∈A

C̄n
a + γQ̄n−1

M − B̃n
C

]

−
(
EC̄a∗, n + γQ̄n−1

M
)

= En−1
[
max
a∈A

C̄n
a − B̃n

C

]
− EC̄a∗, n . (25)

In SS-MDP, the bias correction term B̃n
C can be written as

B̃n
C = ( ξ

b + b)σa∗, n with b := bA and σa∗, n := σ̄(sn , an ) . With
this, we rearrange the term maxa∈A C̄n

a − B̃n
C in (25), using the

abbreviation μa∗, n := EC̄a∗, n , as follows:

max
a∈A

C̄n
a − B̃n

C

= max
a∈A

C̄n
a −

((
ξ

b
+ b

)
σa∗, n

)

= max
a∈A

(
C̄n

a − μa∗, n
)
−

(
ξ

b
+ b

)
σa∗, n + μa∗, n

= σa∗, n

(
max
a∈A

(
C̄n

a − μa∗, n

σa∗, n

)
− b− ξ

b

)
+ μa∗, n

=
σa∗, n

b

(
b

(
max
a∈A

(
C̄n

a − μa∗, n

σa∗, n

)
− b

)
− ξ

)
+ EC̄a∗, n .

(26)

Substituting (26) back into (25) gives

En−1
[
max
a∈A

C̄n
a − B̃n

C

]
− EC̄a∗, n

= En−1
[
σa∗, n

b

(
b

(
max
a∈A

(
C̄n

a − μa∗, n

σa∗, n

)
− b

)
− ξ

)

+ EC̄a∗, n

]
− EC̄a∗, n

=
σa∗, n

b

(
En−1

[
b

(
max
a∈A

(
C̄n

a − μa∗, n

σa∗, n

)
− b

)]
− ξ

)
.

(27)

Let Ya := b(maxa∈A( C̄ n
a −μa ∗, n
σa ∗, n

)− b). As C̄n
a is a sample

average of C(a) and |C(a)| < CM <∞, we note that
supa E[|maxa∈A C̄n

a |2 ] <∞. This implies uniform integrabil-
ity of Ya .

With uniform integrability of Ya and Lemma 11, which shows
that Ya converges to standard Gumbel distribution as |A| → ∞,
Ya converges in mean to the mean of standard Gumbel random
variable ξ. The RHS of (27) tends to 0 as |A| → ∞, and therefore

B̃n
C

|A|→∞−−−−→ B̄∗,n . As a note, assuming the normality of C̄n
a

is generally reasonable when n is large due to a central limit
theorem on bounded finite variance random variable C. �

This theorem requires |A| → ∞ for the bias correction term
B̄n to asymptotically converge to the correct bias Bn in mean.
In practice, where a finite action space is given, B̄n tend to
be larger than, so the resulting Q̂n

BC is overcorrected and it
has smaller value than the optimally corrected Q-sample Q̂∗,n .
Theoretically, this overestimation of bias gets worse with
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Fig. 2. This plot shows the effect of tuning the parameter K of BCQ-
MS. Simulation settings are held the same as those used to generate
Fig. 4. We report the mean and the standard deviation from five indepen-
dent runs, and match the y-axis of the plot with that of the plot in Fig. 4.
Larger K means stronger correction against max-operator bias due to
random transition. The optimal value is plotted as a thick horizontal line
around 1 20 000.

smaller action space; yet we believe that this issue has much
smaller effect in practice. When the initial values are set to be
lower than the optimal value, the oversized correction term may
slow down the empirical convergence from below, but this slow-
down is much milder than what happens when letting the max-
operator bias propagate through max operators in Q-learning
algorithm. We demonstrate the empirical results in Sections V
and VI, where the empirical effect of undercorrection and over-
correction of max-operator bias on the Q-estimate is shown in
Fig. 2 in Section VI.

IV. MULTISTATE EXTENSION OF BCQ

Of the two different sources of max-operator bias in Q-
learning as defined in (11), BCQ algorithm for SS-MDP shown
in Algorithm 1 helps to correct only the Bn

C term. We lift this
limitation, and construct a multistate extension to BCQ so that
it can handle max-operator bias in MDPs with multiple states.
The multistate extension adds another bias correction term that
targets the Bn

T term of max-operator bias in Q-learning.

A. Designing the Correction Term for Bn
T

We aim to correct the bias due to stochastic transition, de-
noted as Bn

T and defined in (13). To do so, we take a direct
approximation of the expectation in (13) with the empirical ex-
pectation, which leads to the multistate bias-correction term B̃n

T

defined as

B̃n
T := γ

(

max
a ′∈A(sn + 1 )

(
Q̄n−1 (

sn+1 , a′
))

− 1
K

K∑

k=1

(

max
a ′∈A(T̂ k )

Q̄n−1
(
T̂ k , a′

)
) )

(28)

where T̂ k are elements of a set of K most recent transition
observations from sn . That is, T̂ k are the elements of a set

Algorithm 2: BCQ Algorithm With Multistate Extension.

Require: Q̄0 (s, a), s0 , γ, access to MDP (S,A, C, T ), N ,
stepsize rule αn , Burn-in parameter K
1: for n = 0, 1, . . . , N − 1 do
2: Decide an

3: Observe Ĉn+1 ∼ C(sn , an )
4: Observe sn+1 = T̂ n+1 ∼ T

(
sn−1 , an−1

)

5: if B̃n+1
C is computable and B̃n+1

T is computable then

6: Compute B̃n+1
C ←

(
ξ

b |A( s n ) |
+ b|A(sn )|

)
σ̄n

(sn , an )
7: Compute B̃n+1

T ←γ(maxa ′∈A(sn + 1 )(Q̄n (sn+1 , a′))
− 1

K

∑K
k=1(maxa ′∈A(T̂ k ) Q̄n (T̂ k , a′)))

8: Compute Q̂n+1
BC ← C̄n+1(sn , an ) +

γ maxa∈A(sn + 1 ) Q̄n
(
sn+1 , a

)
− (B̃n

C + B̃n
T )

9: Update Q̄n+1 (sn , an )← (1− αn (sn , an ))
Q̄n (sn , an ) + αn (sn , an ) Q̂n+1

BC

10: end if
11: end for
12: return Q̄N (s, a)

comprising K last elements of set TK := {si |(si−1 , ai−1) =
(sn , an )}1≤i≤n+1 when the elements are sorted by increasing
order of i. When the set TK has size less than K, then the set
is augmented to have size K with dummy state elements sφ .
The dummy state sφ is an arbitrary state whose value estimate
Q̄n−1 (sφ , a) is defined to be the initialization value Q̄0 .

B. Structural Property of Multistate Bias Correction Term

To have bias correction against Bn
T , K can be set to any

integer greater than one. The larger K, the greater the maximum
stability of bias correction against stochastic transition, at the
cost of greater space complexity to keep track of TK . As K →
∞, the bias correction becomes asymptotically optimal since
B̃n

T → Bn
T . Meanwhile, setting K = 1 results in a degenerate

case in which there will be no bias correction effect because for
K = 1, B̃n

T = 0.

C. BCQ Algorithm With Multistate Extension

The BCQ-MS is shown in Algorithm 2. It extends
Algorithm 1 by applying the multistate bias-correction term.
The key property of multistate extension is the bias correction
term B̃n

T , which is incorporated into the update step of Q̄n .
The condition for “B̃n

T is computable,” similar to that for B̃n
C ,

true if at least K samples of T̂ i where
(
si, ai

)
= (sn , an ) for

i ≤ n is available, where the new input parameter K determines
the relative strength of multistate bias correction. The value of
K can start as low as two, but a larger value may be necessary to
provide sufficient bias-correction depending on the state space
size and transition matrix of the underlying MDP. A general
guideline for setting the parameter K is to set it as at least the
number of states that can be reached in a single step from any
state.
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As a rule of thumb, BCQ-MS will benefit from larger stepsizes
than the classic Q-learning algorithm, which often suffers from
max-operator bias with large stepsizes. Therefore, for faster
empirical convergence, we recommend the stepsize rule αn for
BCQ-MS to be larger than what is used in Q-learning.

D. Asymptotic Convergence of BCQ-MS

We show that the BCQ-MS produces the same Bellman opti-
mal result as Q-learning. The proof of asymptotic convergence
of the BCQ is comprised of three steps, corresponding to the
three stages depending on the iteration counter n. First, we
show that the Q values after the first (burn-in) stage have fi-
nite deviation from any given initial setting satisfying the set
of requirements for vanilla Q-learning to converge, as given in
[2]. Second, we show that the Q values after the second (bias-
correction) stage have finite deviation. Third, we show that the
snapshot of any configuration of all parameters of the BCQ al-
gorithm after the second stage eventually converges to produce
Bellman optimal output Q̄n using a Martingale noise sequence.
We present three lemmas in a row, each of which corresponds
to the steps outlined above.

We provide two stage-delimiting parameters to be used in this
section to guide the convergence proof.

1) NB : “Begin” iteration threshold. When the iteration
counter 0 ≤ n < NB , the BCQ is in burn-in stage, where
it is using samples to estimate variables necessary to com-
pute the bias correction term via bootstrapping. Unless
it is arbitrarily tuned, NB = n when the condition “B̃n

C

is computable and B̃n
T is computable” is first satisfied in

Algorithm 2.
2) NE : “End” iteration threshold. When the iteration

counter NB ≤ n ≤ NE , the BCQ is in its bias-corrected
learning phase. Bias correction takes place to reduce max-
operator induced bias in learning trajectory of Q estimate.
Unless arbitrarily set, NE = N − 1 <∞ is assumed for
implementation of Algorithm 2. However, in implemen-
tations where the iteration counter n > NE , we assume
that bias correction is no longer applied.

The above-mentioned parameters can be set by the user to
fit the nature of intended convergence pattern for the BCQ. In
our implementation used to perform experiments reported in
later sections, we use NB = 2, the first threshold for burn-in
stage. Also in our implementation, we set NE = N − 1, since
we demonstrate the effectiveness of bias correction and the evo-
lution of value estimates over the entire run of N observations.

The following is the set of assumptions required for the
asymptotic convergence of BCQ to Bellman optimal condition.

(A1) The policy to choose an given Q̄n−1 and sn is well
behaved, such that all state-action pairs in S ×A are
visited infinitely often.

(A2) The stepsize rule α conforms to the following condi-
tions:

∑

n

αn−1 (sn , an ) =∞ with probability 1

∑

n

(αn−1 (sn , an ))2 <∞ with probability 1

for any sample realization of (sn , an ).
(A3) The sampled reward C̄n (s, a) follows the distribution

of C (s, a) satisfying the following conditions:

EC (s, a) <∞

E (C (s, a))2 <∞

for n = 0, 1, . . . and any sample realization of (s, a).
(A4) An arbitrary initial value of Q̄0 (s, a) is finite for all

(s, a) ∈ S ×A.
(A5) The discount factor γ satisfies 0 ≤ γ < 1.

This set of assumptions (A1–A5) is sufficient to show the
asymptotic convergence of BCQ to the same Bellman optimal
condition as Q-learning.

Lemma 13 (On Q̂n ): ∀n = 1, 2, . . ., Q̂n <∞ with proba-
bility 1, given Q̄n−1 <∞,∀ (s, a) ∈ S ×A, where Q̂n is de-
fined as

Q̂n := C̄n (sn , an ) + γ max
b∈A(sn+1 )

Q̄n−1 (
sn+1 , b

)
. (29)

Proof: We provide a proof by induction. Begin by assuming
that for n = 1, we have

Q̂1 := C̄1 + γ max
b∈A(s1 )

Q̄0 (
s2 , b

)

where ∀ (s, a) ∈ S ×A, Q̄0 <∞ by Assumption A4. The term
C̄1 <∞ with probability 1 because Ĉ1 ∼ C

(
s1 , a1

)
where

∀ (s, a) ∈ S ×A, EC (s, a) <∞ by assumption A3. γ <∞
by Assumption A5. Therefore, Q̂1 <∞.

The inductive case also holds in a similar proof as follows:

Q̂n := C̄n + γ max
b∈A(sn+1 )

Q̄n−1 (
sn+1 , b

)

where ∀ (s, a) ∈ S ×A, Q̄n−1 <∞ by the inductive hypothe-
sis, and the other terms C̄n−1 and γ are finite in the same manner
as the base case proof. Therefore, Q̂n <∞. �

Lemma 14 (On Q estimate): ∀n = 1, 2, . . ., Q̄n <∞ with
probability 1, given Q̄n−1 <∞,∀ (s, a) ∈ S ×A, where
Q̄n := (1− αn−1 (sn , an )) Q̄n−1 (sn , an ) + αn−1 (sn , an )
Q̂n , Q̂n is as used in Lemma 13, and αn−1 is the stepsize rule
satisfying Assumption A2.

Proof: ∀n = 1, 2, . . ., Q̄n−1 <∞ by assumption, and ac-
cording to Lemma 13, Q̂n <∞. The definitions of B̃n

C and B̃n
T

implies the quantities to be finite, as the initial value Q̄0 is finite
by Assumption A4. The definition of Q̄n as shown above is a
linear combination of Q̄n−1 and Q̂n , both of which are finite,
so Q̄n <∞. �

Lemma 15 (Finite Divergence Phase 1): For any N1 , N2
such that 0 ≤ N1 < N2 <∞ and ∀ (s, a) ∈ S ×A

∣
∣Q̄N2 (s, a)− Q̄N1 (s, a)

∣
∣ <∞ with probability 1

given the assumptions A1–A5 for BCQ.
Proof: Without loss of generality, assume (s, a) as any arbi-

trary element in S ×A
∣
∣Q̄N2 (s, a)− Q̄N1 (s, a)

∣
∣ ≤

∣
∣Q̄N2 (s, a)

∣
∣ +

∣
∣Q̄N1 (s, a)

∣
∣

≤ |CN2 |+ |CN1 |
<∞
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with probability 1. The last line mentioned above uses the re-
sult of Lemma 14, ∀n = 1, 2, . . . , Q̄n <∞, to show that the
following arbitrary finite numbers CN2 and CN1 exist:

∃CN2 such that Q̄N2 (s, a) < CN2 <∞,∀ (s, a) ∈ S ×A

∃CN1 such that Q̄N1 (s, a) < CN1 <∞,∀ (s, a) ∈ S ×A
with probability 1. �

Lemma 16 (On Q Estimate With Bias Correction): ∀n =
2, 3, . . ., Q̄n

BCQ <∞ with probablity 1, given Q̄n−1
BCQ <

∞,∀ (s, a) ∈ S ×A, where Q̄n
BCQ is defined as

Q̄n
BCQ := (1− αn−1 (sn , an )) Q̄n−1

BCQ (sn , an )

+ αn−1 (sn , an )
(
Q̂n −

(
B̃n

C + B̃n
T

))
. (30)

Q̂n is defined as in (29), and αn−1 is the stepsize rule satisfying
Assumption A2.

Proof: ∀n = 2, 3, . . ., B̃n
C (s, a) <∞, since VarC̄ (s, a) <

∞ for all (s, a) ∈ S ×A. Also, Q̄n−1
BCQ <∞ by assumption, and

according to lemma 13, Q̂n <∞. The definition of Q̄n
BCQ as

shown above is a linear combination of the two finite values
Q̄n−1 and Q̂n , so Q̄n

BCQ <∞. �
Lemma 17 (Finite Divergence Phase 2): For any N2 , N3

such that 1 < N2 < N3 <∞ and ∀ (s, a) ∈ S ×A
∣
∣
∣Q̄N3

BCQ (s, a)− Q̄N2
BCQ (s, a)

∣
∣
∣ <∞ with probability 1

given Assumptions A1–A5 for BCQ, and Q̄n
BCQ as defined in

(30) for n > 1. �
Proof: Apply Lemma 15 with N1 ← N2 and N2 ← N3 .
Theorem 18 (Asymptotic Convergence of BCQ): For any ar-

bitrary parameter settings such that 0 < NB < NE <∞ and
satisfying Assumptions A1–A5, the output Q̄n of BCQ from
iteration n has the following asymptotic property:

Q̄n
BCQ

n→∞−−−→ Q̄∗

where Q̄∗ is the same Bellman optimal convergence point for
both Q-learning and BCQ.

Proof: We show that the divergence of Q̄N E
from Q̄0 is at

most finite for any parameter settings for BCQ under the set of
assumptions A1–A5.

∣
∣
∣Q̄N E − Q̄0

∣
∣
∣

=
∣
∣
∣Q̄N E − Q̄N B −1 + Q̄N B −1 − Q̄0

∣
∣
∣

≤
∣
∣
∣Q̄N E − Q̄N B −1

∣
∣
∣ +

∣
∣
∣Q̄N B −1 − Q̄0

∣
∣
∣

=
∣
∣
∣Q̄N E

BCQ − Q̄N B −1
BCQ

∣
∣
∣ +

∣
∣
∣Q̄N B −1 − Q̄0

∣
∣
∣ <∞

where the last equality is due to the fact that only from iteration
NB , bias-corrected update rule is applied (note that Q̄N B −1

BCQ =
Q̄N B −1 in this case). Then, the last inequality comes out from
applying Lemmas 17 and 15 for the first and the second deviation
terms, respectively.

Since there is at most finite divergence of Q̄N E
from the

initial value Q̄0 , we can always construct a new Q-learning

instance with initial value set as Q̄ = Q̄N E
and the same set

of assumptions (A1–A5). This new instance of Q-learning is
known to asymptotically converge to Bellman optimality under
Assumptions A1–A5 in [2]. �

Theorem 18 shows that BCQ asymptotically converges to the
same point as Q-learning. This serves as a sanity check for the
new algorithm such that it retains the key property of Q-learning,
while it curtails the max-operator bias in Q-learning. This is not
a proof of faster asymptotic rate of convergence, as the bias
correction is active during a finite number of earlier iterations.

V. MULTIARMED BANDIT SIMULATION BENCHMARK

In this section, we use the game of Roulette as a benchmark,
since the optimal policy (and value) is known. Roulette is a well-
known gambling problem, in which players place different kinds
of bets on a set of numbers and then receive a set contribution
if the random outcome of Roulette spin matches the bet. At the
same time, Roulette is an SS-MDP, where its stochastic contri-
bution function gives rise to significant max-operator bias when
classic Q-learning is applied. We use Roulette to show that the
BCQ algorithm is highly resistant to the Q value overestimation
found in the classic Q-learning algorithm.

A. Roulette as a Multiarmed Bandit Problem

Roulette can be naturally cast as a multiarmed bandit problem
with 153 arms. In particular, 153 arms stand for the following
possible types of bets: 38 actions of betting on 1 number, 29
actions on 2 numbers, 12 actions on 3 numbers, 22 actions on
4 numbers, 1 action on 5 (“top line”) numbers, 6 actions on 6
numbers, 6 actions on 12 numbers, 6 on 18 numbers, and 1 on
betting on nothing. These actions are grouped in their winning
probabilities, and the order given above is in decreasing variance
of the contribution function. These contribution functions are
stochastic with varying degrees of noise inherent to different
types of betting actions because each type of betting action has
different winning odds. In an ideal Roulette, the contribution
function is fully known, so the best cost-to-go function and the
best policy can be computed a priori.

We simplify the game of Roulette as follows. We limit the
betting strategy of Roulette by allowing the bets to be only $0
or $1, and keeping only 39 actions, which corresponds to 38
actions of betting on each of 38 numbers in Roulette and 1 no-
betting action. In this case, 38 actions of betting have expected
reward of−$0.0526 and the no-betting action of $0. We cast this
simplified version of Roulette into a 39-armed bandit problem,
whose optimal policy is not to play, or choosing the “no-betting”
action. The simplified Roulette can be also seen as an SS-MDP,
as after each roll of Roulette the agent must decide the action in
turn.

B. Performance Comparison

When the simplified Roulette is seen as an infinite horizon
Markov decision problem, the optimal policy is to select the
no-betting action, and the optimal value function has value of
0, regardless of the value of the discount factor γ. We apply
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Fig. 3. Plot shows the evolution of value estimate from classic Q-
learning and BCQ for SS-MDP, total of ten sample runs. Each figure
has ten lines corresponding each sample run, which signifies consis-
tently reproduced upward bias in Q learning in the top figure, and the
suppression of it in the bottom figure. Note that 8 runs from the bottom
figure, where bias correction is in action, are on top of each other as they
are exactly on 0.

Q-learning and BCQ to this simplified Roulette, with γ = 0.99.
A harmonic stepsize function αn−1 = 100

n + 100 and pure random
exploration policy to decide an−1 are used in both algorithms.
The initial value of Q̄0 is set to 0, which is the optimal value
Q̄∗. The default value of two for burn-in constant of BCQ is
used.

We report the evolution of the value function estimate from
Qn estimates in Fig. 3. Q-learning shows massive overestima-
tion of values for every ten runs, implying that it believes in
winning a few hundred dollars in this benchmark Roulette that
is modeled as γ = 0.99 discounted infinite horizon MDP. On
the other hand, the BCQ estimate stays at 0 for eight of the ten
repeats, and shows well-controlled (more than 1000× reduc-
tion) value overestimation for the other two cases, where bias
observed was not perfectly controlled due to approximate nature
of bias correction.

VI. ELECTRICITY STORAGE PROBLEM

There is growing interest in using grid-scale batteries to store
energy to take advantage of electricity price variations and to
smooth out generation from renewables. The problem can be

formulated as finding a policy that maximizes the γ-discounted
sum of rewards over time. We formulate the problem as a dy-
namic program with a state variable that captures the price of
electricity and the amount of energy in storage. The stochas-
tic volatility of electricity prices is the primary cause of the
max-operator bias. We show that the max-operator bias is sig-
nificant in Q-learning, but can be controlled using the multistate
extension of BCQ.

A. Problem Formulation as an MDP

We model the electricity storage problem as an MDP, whose
specification we discuss in this section. The state at time n
is the minimally sufficient information to simulate the state at
time n + 1 in an MDP with a given policy π. Since we use the
tabular representation of Q values, the state at time n, denoted
sn , is comprised of the following discrete values: The binned
current storage level bR (Rn ), and the binned current electricity
spot price level bP (pn ). The binning function bR discretizes
the storage levels as 11 evenly spaced linear space with max
value of 2000 and min value of 0, and the binning function bP

discretizes the price levels as 11 evenly-spaced log-space with
max and min value set as the maximum and minimum observed
prices.

The action at time n, denoted an , is the amount of energy
traded. The actual values of an is discretized by choosing one
from a set of possible values that exactly fits the difference of
two bin averages of energy stored in the battery. Therefore, we
note that the following holds for all n:

an := bR
(
Rn+1)− bR (Rn ) . (31)

The contribution function is set to be the actual cost to buy
and revenue to sell electricity to the spot market at the current
market price of electricity. Formally stated

Ĉ (sn , an ) := −pnan (32)

= −pn
(
bR

(
Rn+1)− bR (Rn )

)
(33)

where pn is the undiscretized spot price of a unit of elec-
tricity at time n. It is important to note that the discretiza-
tion in the state variable creates additional stochasticity in
the cost function stated above, as the binned representation
of electricity price in state variable will create the following
effect: Given a state s′ and a suitable action a′, there exist
two distinct price values p1 �= p2 such that bP (p1) = bP (p2).
This implies Var[Ĉ(sn , an )|s′, a′] > 0, which in turn implies
Varn−1 [Ĉn ] > 0 in the Q-learning and the BCQ algorithms ap-
plied to solve the MDP.

To model the transition of electricity price pn as n increases,
we fit a hidden semi-Markov model to a real-world data collected
from grids near Princeton, NJ, USA, which is shown to predict
the crossing time distributions of the actual price processes much
better than autoregression models, such as an ARMA model
[20].

The discount factor of γ = 0.95 is used, and the MDP is mod-
eled in 5-min increments over a 1-d horizon, which translates to
288 time periods per epoch.
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Fig. 4. This plot shows the evolution of value function estimate from
three different algorithms. Five independent runs are averaged and plot-
ted, with the standard deviation values plotted as error bars. The optimal
value is plotted as a thick horizontal line around 1 20 000.

B. Performance Comparison

We first demonstrate the effectiveness of multistate extension
in controlling max-operator bias in this battery benchmark prob-
lem. We present the evolution of the value estimate of the initial
state of epochs, from epoch 0 to epoch 2499, for the following
algorithms.

1) Q-learning (no correction against either stochastic con-
tribution or state transition).

2) BCQ for SS-MDP (no correction against state transition).
3) BCQ-MS, strong correction K = 1000.

For all cases, we use the stepsize rule of αn = 1000
n+1000 , initial

value Q̄0 = 0, and pure exploration policy to cover the state-
action space as evenly as possible. We repeat five independent
runs of the algorithms, and report the mean value estimate and
its standard deviation in Fig. 4.

Clearly, BCQ-MS shows effective resistance against the max-
operator bias in battery control benchmark problem. On the
other hand, Q-learning overshoots value estimation due to the
max-operator bias. BCQ for SS-MDP, which by design, cannot
effectively counteract bias due to transition in multistate MDPs,
shows similar overshoot as Q-learning.

We also present the effect of varying bias-correction strength
in BCQ-MS. To do so, we use K ∈ {10, 100, 1000} in the bat-
tery benchmark problem and report the evolution of value es-
timates from the following algorithms in Fig. 2. Using smaller
K reduces bias-correcting effect of BCQ-MS and the value es-
timates may overshoot as shown in K = 10 case, but that is
nowhere as significant as Q-learning and BCQ for SS-MDP
shown in Fig. 4. For the ease of comparison between Figs. 2
and 4, we maintain other factors the same: We use the stepsize
rule of αn = 1000

n+1000 , initial value Q̄0 = 0, and pure exploration
policy to cover the state-action space as evenly as possible.

VII. DISCUSSION

BCQ for SS-MDP rely on |A| → ∞ for its optimal correc-
tion property, and it overcorrects the bias in SS-MDPs with finite
action space. Also, in its multistate extension, the tunable pa-
rameter K also introduces the potential for overcorrection when

K values are set too high. We consider that overcorrection is
possible, but it has much smaller impact on the convergence
of Q-estimate than the letting the max-operator bias to prop-
agate through with undercorrection. As shown in Fig. 2, the
overcorrected K = 1000 trajectory closes the gap from the op-
timal much faster than the undercorrected K = 10 trajectory,
which has a mild overshoots. This is because the max opera-
tor in Q-learning filters out underestimated Q values, whereas
the overestimated Q values tend to propagate to Q-values of
other state-action pairs during learning and delays the conver-
gence once the overshooting happens. Therefore, we think that
the impact of overcorrecting bias due to violating |A| → ∞ as-
sumption of bias-correction term is mild in practice because the
overcorrection takes much less number of samples to recover
than undercorrection.

We note that the bias-correction machinery in BCQ-MS intro-
duces additional computational burden compared to Q-learning.
In theory, per-iteration time complexity is increased by O(1) due
to computing the correction terms, and the space complexity is
increased by O(|S||A|K) due to computing the estimators for
C and σ, as well as computing multistate extension part. In par-
ticular, in the experiments we performed, extra computational
burden of bias correction increased per-iteration runtime ap-
proximately by 40% compared to Q-learning, when executed
to reach 1 million iterations. Considering that Q-learning may
take much more iterations to correct max-operator bias once it
shows up in its Q̄ estimate as shown in Fig. 4, it makes a sensible
decision to avoid that path at the cost of increasing per-iteration
runtime by 40%.

We presented asymptotic convergence result of BCQ-MS, as
we consider this being the fundamental property for a correc-
tion to address the inherent problem in Q-learning algorithm.
A natural direction for future research that deserves theoretical
analysis is the finite time rate analysis on the error in Q̄n

BCQ in
comparison to Q̄n , especially once it gains positive bias due to
max-operator bias in Q̂n .

VIII. CONCLUSION

We identified the sample bias caused by max operator in Q-
learning algorithm as the max-operator bias, and characterized
the bias into two additive terms by their origin of stochasticity.
We presented correction methods for each of the two bias terms,
with which we design a plug-in addition to augment Q-learning
algorithm to have resistance against max-operator bias, result-
ing in BCQ-MS. We demonstrated that Roulette and Electric-
ity Storage MDPs are useful benchmark problems where max-
operator bias is easily observed in Q-learning. We showed that
each bias correction method introduced has intended effects of
controlling two sources of max-operator bias, as demonstrated
in the value estimates from the two benchmark problems.
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